Refine Your Search

Topic

Author

Search Results

Technical Paper

Virtual Design Validation of Innovative High Ground Clearance Tractor Kit

2024-01-16
2024-26-0066
An agricultural tractor is often modified for special farming applications such as horticulture where the standard design is not suitable or accessible. In such cases, farm equipment manufacturers are demanded frugal and cost effect Engineered farming solutions. One such design is the innovative High Ground Clearance Tractor (HGCT) kit offered to increase the Tractor height without damaging the crop during farming operations. In this paper, the author proposes a durability assessment method to evaluate the HGCT kit attachments to meet the durability criteria. Road load data acquisition is done to measure the acceleration and strain levels for various horticulture operations such as tillage, spraying and transportation. Actual operating conditions are simulated with the help of four poster durability setups inside the lab which helps to reduce the field testing for design iterations.
Technical Paper

Finite Element Analysis and Correlation with Physical Test of Tractor Hood Bang Endurance Test

2024-01-16
2024-26-0071
Tractors primarily serve agricultural functions but are also employed in various other applications such as loading, construction, and hauling. Tractors comprise several key assembly, including the engine, transmission, front hood assembly, and skid, among others. The hood is a critical assembly of the tractor, enclosing the engine and its associated parts. It is constructed from sheet metal with a 'Class A' surface finish for aesthetic purposes. The Hood is locked using latch mechanism mounted on the tractor chassis. The primary function of the hood is to facilitate the opening and closing of the hood assembly during servicing, and it often undergoes rough handling. Therefore, it becomes imperative to validate the durability of the hood assembly to ensure it can withstand the real-world conditions it encounters during these operations.
Technical Paper

Reduction of Carbon Footprint Using Additive Inspired Design in Tractor Hydraulic Systems

2024-01-16
2024-26-0070
Tractor is primarily used for Haulage and agricultural applications due to this high tractive effort. A tractor usage has been increased in recent times for its wide range of implement applications. Considering environmental factors and sustainability, restrictions are set on the Tractor emissions. This brings new challenge in the Tractor industry to reduce the carbon footprint. Conventional casting process involves preparation of die & mold, material removal and machining in the final stage to get the desired final product. Alternatively Additive Manufacturing Process (AMP) helps in creation of lighter and stronger parts by adding material layer by layer. By saving the material, weight of the overall Tractor is reduced which helps in reducing carbon footprint. But the disadvantage of this process is the limited availability and high cost of AMP material and lack of infrastructure/skill set for operation handling.
Technical Paper

Weight and Drivetrain Optimization via Fuel Pump & Vacuum Pump Drive Integration on Engine Camshaft in a Pushrod Type Valve Actuated Engine

2024-01-16
2024-26-0046
In the realm of modern powertrains, the paramount objectives of weight reduction, cost efficiency, and friction optimization drive innovation. By streamlining drive trains through component minimization, the paper introduces a groundbreaking approach: the integration of fuel pump and vacuum pump drive systems into the main camshaft of a two-valve-per-cylinder push-rod actuated 4-cylinder diesel engine. This innovation is poised to concurrently reduce overall weight, lower costs, and minimize drive losses. The proposed integration entails the extension of the camshaft with a tailored slot, accommodating a three-lobed cam composed of advanced materials. This novel camshaft configuration enables the unified propulsion of the oil pump, vacuum pump, fuel pump, and valve train, effectively consolidating functions and components.
Technical Paper

Model Based Charge Control for 3-Cylinder TGDI Miller Engine Containing Variable Geometry Turbocharger

2024-01-16
2024-26-0043
For ensuring environmental safety, strong emphasis on CO2 pollution reduction is mandated which led to evolution of miller cycle engines. However, the inherent Miller engine characteristic is the lower volumetric efficiency when compared to otto engines because of which small turbo chargers with variable geometry turbines are used to induct air into the engine. With miller engine and VGT turbo charger combination arises the challenges of charge controllability because of lower inertia and reduced vane control area. With conventional turbo charger control methods, the response time is slow thereby leading to turbo lag or severe over boosting, this is overcome by accurate engine modelling and using the same as input for charger control.
Technical Paper

Effect of Lift Axle Suspension Design on Heavy Commercial Vehicle Handling Performance

2024-01-16
2024-26-0049
The cost of fuels used for automobile are rising in India on account of high global crude oil prices. The fuel cost constitutes major portion of total cost of operation for Heavy commercial vehicles. Hence, the trend is to carry the goods transport through higher payload capacity rigid/straight trucks that offer lower transportation cost per unit of goods transported. This is driving the design of multi-axle heavy trucks that have lift axles. In addition, improved network of highways and road infrastructure is leading to increase in average operating speed of heavy commercial vehicles. It has made increased focus on occupant as well as road safety while designing the heavy trucks. Hence, the analysis of lift axle suspension from the point of view of vehicle handling and stability is essential. There are two basic kinds of lift axle designs used in heavy commercial vehicles: self-steered lift axle having single tire on each side and non-steered lift axle with dual tires on each side.
Technical Paper

Oil Aerosol Emission Optimization Using Deflectors in Turbo Charger Oil Drain Circuit

2024-01-16
2024-26-0047
Closed crankcase ventilation prevent harmful gases from entering atmosphere thereby reducing hydrocarbon emissions. Ventilation system usually carries blowby gases along with oil mist generated from Engine to Air intake system. Major sources of blowby occurs from leak in combustion chamber through piston rings, leakage from turbocharger shafts & leakage from valve guides. Oil mist carried by these blowby gases gets separated using separation media before passing to Air Intake. Fleece separation media has high separation efficiency with lower pressure loss for oil aerosol particles having size above 10 microns. However, efficiency of fleece media drops drastically if size of aerosol particles are below 10 microns. Aerosol mist of lower particle size (>10 microns) generally forms due to flash boiling on piston under crown area and from shafts of turbo charger due to high speeds combined with elevated temperatures. High power density diesel engine is taken for our study.
Technical Paper

SUV Multi-Link Rigid Axle Control Links Optimization for Ride and Handling Improvement

2024-01-16
2024-26-0048
In automotive world role of suspension system is to absorb vibrations from the road, and to provide stability while vehicle is going over bumps or uneven roads, cornering, acceleration and braking etc. For body on frame SUVs which are typically characterized by high center of gravity, it is quite critical to find best balance in ensuring stability of the vehicle and having comfortable ride performance. Rigid axle rear suspension is quite a typical choice in such vehicles, wherein lower and upper control links are two important components subjected to lateral, longitudinal, and vertical loads. These links allow the vehicle to move smoothly throughout the entire range of suspension travel. Kinematics and compliance optimization of these links is a major factor in definition of ride-handling performance of the vehicle.
Technical Paper

Experimental Analysis of Multi-Link Rigid Axle Suspension Camber Variation with Vehicle Load

2024-01-16
2024-26-0054
Increased popularity on SUV category in the market has led to high focus on performance attributes of SUVs. Considering high weight & CoG achieving target handling performance is always a challenge. Static Wheel Alignment parameters, especially Camber have shown significant contribution in Handling attributes of vehicle. This paper presents an experimental study on change in wheel camber under the influence of different vehicle loading conditions. In SUVs, generally wheel is subjected to large deflection from its high static loads which makes it quite difficult to maintain an ideal camber angle. Hence, it is important to analyze the camber angle variations under actual loading conditions. An in-house fixture is developed to emulate the actual vehicle loading conditions at rear wheel end. The multi-link rigid axle suspension with watt’s link assembly is mounted on the chassis-frame which is rigidly fixed to ground, and loads are achieved through hydraulic actuators at Wheels.
Technical Paper

Regeneration Calibration for Optimum Range and Effective Brakes Performances in eSUV

2024-01-16
2024-26-0110
Regenerative braking is an effective approach for electric vehicles (EVs) to extend their driving range. To enhance the braking performances and regenerative energy, regenerative braking control strategy based on multi objective optimization is explained in this paper. This technical paper would be focusing on extracting optimum Range with effective brake performances without affecting drivability and performances in different drives modes. An extensive research study on public road driving patterns is done to understand the percentage utilization of brakes at various (low-mid-high) speeds as per the customer driving behavior. Multi-Objective optimization function with three vital factors is defined where output generated power, torque smoothness and current smoothness are selected as optimization objective to improve the driving range, braking comfort, and battery lifetime respectively.
Technical Paper

Importance of Casting Soundness in Aluminium Parts for Laser Weld Quality

2024-01-16
2024-26-0191
Light weight and Robust manufacturing technologies are always needed for transformation drive in the Automotive industry for the next-generation vehicles with greater Power to weight ratio. Innovations and process developments in materials and manufacturing processes are key to this light weighting transformation. Aluminium material has been widely used for these light weighting opportunities. However, aluminum joining techniques, characterized by their poor quality and consistency are limiting this transformation. This technical paper represents one of such case, where the part is made up of Aluminium through conventional casting route which has affected the laser weld quality due to poor casting soundness. This experiment explains in detail about the importance of Casting soundness for laser weld quality, weld penetration, strength etc., and the Product consistency.
Technical Paper

Headliner Composition Optimization without Compromising the Safety and Performance

2024-01-16
2024-26-0190
Reducing material wherever there is a possibility in automobile industry is inevitable for weight and cost saving. This paper explains about the possibilities of optimizing the material composition of automotive Headliners (also called as Roof liners) without affecting the performance and safety criteria. In this paper, we are targeting at optimizing the individual constituents of a composite Headliner. A conventional Headliner comprises of many sandwich layers of which PU foam shares the major percentage of the composition contributing to 80% of the Headliner thickness. In this paper, we are discussing about the optimization done in Headliner sandwich constituents without affecting the core performance parameters of headliner such as curtain airbag deployment, ergonomic regulations, drop test etc. By incorporating this change, without significant changes in other layers, overall weight reduction of ~24% and overall cost reduction of ~24% is achieved.
Technical Paper

After Treatment Sensors Positioning for BS6.2 Diesel Engine

2024-01-16
2024-26-0039
BS6.1 emission standards were implemented in India in 2020 followed by BS6.2 which added more controls on emission limits. For BS6.2 OBD (On Board Diagnostics) and RDE (Real Driving Emission) were added on to the existing BS6.1 emissions. Emission control changes usually need addition of new parts, calibration changes and durability requirements. For the current 1.5L, 3-cylinder diesel engine an pSCR (Passive Selective Catalytic Reduction) brick was added for control of NOx for meeting RDE. For meeting OBD requirements PM (Particulate Matter) and NOx sensors were added in the cold end pipe along with calibration changes to meet the BS6.2 norms. In this paper we will discuss on the design aspects of sensors and pSCR only. The sensor and pSCR positioning plays vital role in meeting the legislative requirements and to ensure the ease of assembly and durability of the parts.
Technical Paper

Light Weighting of Tractor Components Using Virtual Optimization Technique

2024-01-16
2024-26-0390
Usually conventional iterative methods of optimization will consume more time to optimize the given design. Mostly, it becomes very difficult if multiple loads are acting on the structure contradicting each other. CAE based optimization technique becomes more useful in such cases to optimize the given design and achieve weight reduction. Optimization methods offers guidance to expedite solutions, resulting in a substantial reduction in product development time. Nowadays, optimization became inevitable part among the virtual validation processes of design in industries. A wide range of optimization methods have been effectively employed in the design of tractor components, especially mounting brackets, chassis and skid housing for the development of off-road vehicle. Based on the design stage, various optimization techniques were followed i.e. Topology, size and shape. Depending upon the available analysis time & Design freedom, determines the type of optimization approach to be used.
Technical Paper

An Innovative and Customer Centric Approach on Validating Telematics Based Fleet Optimization Feature for Small Commercial Vehicles

2024-01-16
2024-26-0378
Commercial transportation is the key pillar of any growing economy. Light and Small commercial vehicles are increasing every day to cater the logistics demand, but there is always a gap between customer’s actual and desired operational efficiency. This is because of lack of organized fleet and efficient fleet operation. The major requirement of fleet owners is timely delivery, high productivity, downtime reduction, real time tracking, etc., Automakers are now providing fleet management application in modern LCV & SCV to satisfy the fleet operator requirement. However, any feature malfunction, consignment mismatch, wrong notification, missed alerts, etc., can incur huge loss to fleet operator and disrupt the entire supply chain. Hence it is very critical to extensively validate the telematics features in fleet management application. This paper explains the approach for exhaustive validation strategy of fleet management applications (B2B) from end user perspective.
Technical Paper

An Investigation on High Impact Torque of BEV and Driveshaft Robustness Improvements

2024-01-16
2024-26-0334
The inherent capacity of electric motors to generate substantial instant torque can lead to significant load reversals in electric vehicle driveshafts under specific road conditions and driving maneuvers, highlighting the need for targeted improvements in driveshaft design, particularly in optimizing joint sizing. This paper presents a systematic approach to investigate the root causes of a catastrophic driveshaft failure that occurred during specific vehicle tests on a road with multiple speed bumps, resulting in numerous high torque reversals. The objective was to enhance system robustness through changes in driveshaft design and the manufacturing process, coupled with a software calibration technique to reduce torque demands under such operating conditions. The process encompassed torque measurements at the vehicle level, failure replication on a test rig, and correlation with simulations.
Technical Paper

Investigation of Synchronizer Ring Failure in a Commercial Vehicle Transmission

2024-01-16
2024-26-0383
The commercial vehicles market is dominated by manual transmission, due to lower ownership cost. Generally, commercial vehicles are used in large numbers by the fleet owners. The transmission endurance life is very important to a vehicle owner. On the other hand, driver fatigue can be reduced with a smooth gear change process. The gear change process in a manual transmission is carried out with the help of the synchronizer pack. The crucial function of a synchronizer pack in an automotive transmission is to match the speed of the target gear for smooth gear shifting. In a transmission, the loose and the weakest part is the synchronizer ring. The failure of the synchronizer affects smooth gear shifting and it also affects the endurance life of the transmission. The synchronizer ring can fail due to poor structural strength, synchronizer liner wear, synchronizer liner burning, etc.
Technical Paper

Design Evolution of an Exhaust After Treatment System Development for a High-Power Diesel Engine Adhering Global Emission Norms

2024-01-16
2024-26-0138
With the advent of stricter emission norms such as Bharat Stage VI - Phase I and II, the design of the exhaust after treatment system becomes crucial for the internal combustion engine. Inadvertently, the size of the after-treatment system also becomes bigger to cater to the latest emission norms, which leads to increased resistance to the flow of exhaust gases through them. However, the resultant back pressure generated in these devices deteriorates the engine performance. Hence, the onus is on the engine designer to design the after-treatment system and the bracketing concept for mounting in such a way that the engine performance remains intact, and the entire system is packaged within the vehicle boundary conditions. The after-treatment system experiences severe vibrational loads as well as thermal loads.
Technical Paper

HVAC NVH Refinement in Electric Vehicle

2024-01-16
2024-26-0206
Customers expect more advanced features and comfort in electric vehicles. It is challenging for NVH engineers to reduce the vibration levels to a great extent in the vehicle without adding cost and weight. This paper focuses on reducing the tactile vibration in electric vehicle when AC is switched ON. Vibration levels were not acceptable and modulating in nature on the test vehicle. Electric compressor is used for cabin cooling and battery cooling in the vehicle. Compressor is connected to body with the help of isolators. Depending upon cooling load, the compressor operates between 1000 rpm and 8000 rpm. The 1st order vibration of compressor was dominant on tactile locations at all the compressor speeds. Vibration levels on steering wheel were improved by 10 dB on reducing the dynamic stiffness of isolators. To reduce the transfer of compressor vibration further, isolators are provided on HVAC line connection on body and mufflers are provided in suction and discharge line.
Technical Paper

Evaluation of Fretting Phenomenon in Gearbox and Allied Failures

2022-03-29
2022-01-0648
This paper takes a review of fretting phenomenon on splines of the engaging gears and corresponding splines on shaft of automotive transmission and how it leads to failure of other components in the gearbox. Fretting is a special wear process which occurs at the contact area of two mating metal surfaces when subject to minute relative oscillating motion under vibration. In automotive gearbox, which is subjected to torsional vibrations of the powertrain, the splines of engaging gears and corresponding shaft may experience fretting, especially when the subject gear pair is not engaged. The wear debris formed under fretting process when oxidizes becomes very hard and more abrasive than base metal. These oxidized wear particles when comes in mesh contact with nearby components like bearings, gears etc. may damage these parts during operation and eventually lead to failure.
X