Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Technical Paper

An Experimental Approach Towards Sustainable Solution for Material Recycling of ELV Plastic Bumpers and EV Batteries

2024-01-16
2024-26-0164
A general automotive car is majorly composed of high strength steel (6%), other steel (50%), Iron (15%), Plastics (7%), Aluminum (4%) and others (Rubber, Glass, Textile) about 18%. End-of-life vehicles (ELVs) are a significant source of waste and pollution in the automotive industry. Recycling ELVs, particularly their plastic components, Li-ion batteries, catalytic converters, and critical technology components such as alternators, semi-conductor chips, and high tensile strength steel can reduce their environmental impact and conserve valuable raw materials. The paper conducts a SWOT analysis and a life cycle assessment (LCA) to evaluate the long-term viability and potential of ELV recycling, environmental impact, and carbon footprint.
Technical Paper

A Study on the Impact of Corrosion under Insulation (CUI) on the Acoustic Performance of an Absorptive Muffler of Automobiles

2023-05-08
2023-01-1087
Automobile exhaust systems help to attenuate the engine combustion noise as well as the high frequency flow noises which are generated as the gas expands and contracts through various ducts and orifices of muffler system. One of the solutions to mitigate the noise generated due to the latter is by means of an absorptive muffler, comprising a fibrous acoustic medium which helps to absorb noise of certain frequencies which are sensitive to the human ear. Typically, the construction of such a system consists of the fibrous acoustic medium encompassing a perforated inner pipe on the inside and enclosed by an outer metal case on the outside. The temperature limitations of the acoustic medium sometimes necessitate the placement of the fibrous acoustic system away from the engine source in order to prevent any damage to the fibers upon direct contact with the flue gas.
Technical Paper

Virtual Validation of Gear Shifting Lever Assembly by Impact Simulation and Correlation with Testing

2022-10-05
2022-28-0375
Government’s focus on road safety requirements is resulting in faster adoption of stringent automobile safety regulations in India. In addition, due to changing customer preference, automobile companies are also working to provide safer vehicles in the market. Due to the complexity and high cost of the vehicle safety testing, more focus is given to development of CAE simulation technologies to validate the design for meeting regulatory norms, reducing design cycle time and number of physical tests. Safety requirement in vehicle safety regulations is to minimize the impact transfer to the occupants in case of vehicle crash. During vehicle crash condition, there is possibility that driver head may hit the gear shift lever assembly (GSLA) knob as it falls in the hitting area with respect to driver seat reference point (SRP). There is a regulatory requirement for the maximum acceleration level that is to be experienced by the driver during impact to prevent serious head injury.
Technical Paper

Use of Machine Learning to Predict the Injuries of the Occupant of a Vehicle Involved in an Accident

2021-09-22
2021-26-0003
As per the 2018 MoRTH accident report, there were 467,044 accidents, out of which 137,726 were fatal which resulted in 151,417 fatalities. In order to get an idea of the reasons for injuries and estimate the benefits of any intervention, a mathematical model should go a long way. This study is aimed at the development of such a model to predict the injuries sustained by the occupants of an M1 vehicle. We used a detailed accident database of 'Road Accident Sampling System India' (RASSI). RASSI, since 2011, has been collecting traffic accident data scientific across various locations in India. In the data, the occupant injuries are classified as No injury, Minor, Serious and Fatal We used the data of about 4700+ M1 occupants for the study & used almost 40 input parameters to determine the outcome. Based on the data, an algorithm was developed with an overall accuracy of about 67%. The parameters represented human, infrastructure, and environment.
Technical Paper

Application of Electromagnets in Windshield Wipers

2021-09-22
2021-26-0510
The most widely used type of windshield wiper system employs a coil spring for wiper arm pressure generation. This spring is fixed between the arm head (fixed part) and wiper arm (moving part) and the tension in the spring is responsible for pressure generation. The present arrangement although being unsophisticated design, has following drawbacks: Inability to change wiper arm pressure according to change in vehicle speed. Inability to provide constant arm pressure during the complete range of motion along varying curvature of windshield. Inability to reduce/remove the continuous pressure on wiper blade when vehicle is parked for long durations resulting in permanent deformation of wiper blade rubber. This paper describes how electromagnets can be used to overcome the above stated inherent limitations of the windshield wiper system. An electromagnet is a device which produces magnetic field on application of electric current.
Technical Paper

A Methodology to Enhance the Directional Load Bearing Performance of Cowl Cover and Its Effect on Pedestrian Head Impact

2020-04-14
2020-01-0911
In the modern automobile scenario in developing countries, customers are getting more meticulous and market more competitive. Now even the budget vehicle customer expects desirable vehicle performance in specific use cases of the vehicle that were previously not focused by designers. Hence, the focus on perceived quality challenges automobile engineers to go the extra mile when it comes to the cost-effective design of parts that are tangible to the customer. A vehicle's cowl cover is one such exterior component. The primary functions of this part are to provide air intake opening for the HVAC system and cover the components like wiper motor. The aesthetic function is to cover the gaps between windshield, hood, and fender as seamlessly as possible. A specific role of cowl cover, which calls for a designer's attention, is its load-bearing capability.
Technical Paper

Design of Front Structure of Vehicle for Pedestrian Headform Protection

2017-03-28
2017-01-1298
Vehicle Hood being the face of a passenger car poses the challenge to meet the regulatory and aesthetic requirements. Urge to make a saleable product makes aesthetics a primary condition. This eventually makes the role of structure optimization much more important. Pedestrian protection- a recent development in the Indian automotive industry, known for dynamics of cost competitive cars, has posed the challenge to make passenger cars meeting the regulation at minimal cost. The paper demonstrates structure optimization of hood and design of peripheral parts for meeting pedestrian protection performance keeping the focus on low cost of ownership. The paper discusses development of an in-house methodology for meeting Headform compliance of a flagship model of Maruti Suzuki India Ltd., providing detailed analysis of the procedure followed from introduction stage of regulatory requirement in the project to final validation of the engineering intent.
Technical Paper

Effect of Beam Layout and Specification on Side Door Strength of Passenger Cars: An Experimental Approach to Analyze Its Effect and Contribution to Door Strength.

2017-01-10
2017-26-0023
Risk of injury to occupant in the event of side impact is considerably higher compared to frontal or rear impact as the energy absorbing zones at the front and rear of vehicle is high whereas limited space is available to dissipate the impact energy in the event of side impact. In such scenario strength of side door plays an important role in protecting the occupant. Side door beam in door structure contributes significantly towards the lateral stiffness and plays dominant role in limiting the structural intrusion into passenger compartment. Hence it is interesting to understand the effect of beam specification and orientation on side door strength. Since these factors not only affect the strength but also the cost and weight targets, their study and analysis is important with respect to door design This paper showcases the effect of beam layout and its specifications on the overall strength of the door with an experimental approach using physical test.
Technical Paper

Design of Bumper Beam Structure for Pedestrian Protection and Low Speed Bumper Impact(ECE-R42).

2016-04-05
2016-01-1335
The biggest challenge in vehicle BIW design today is to make a light, cost effective and energy absorbing structure. With the increasing competition as well as increasing customer awareness, today’s vehicle has to satisfy several aesthetic and functional requirements besides the mandatory regulatory requirements. Working on global platform is challenging in order to comply with both pedestrian protection and low speed bumper impact (ECE-R42) and, at the same time, to meet the styling intent of reducing the front overhang. Pedestrian lower leg compliance demands space between bumper member and bumper: a condition that reduces the space available for energy absorption during low speed impact (ECE-R42). Therefore, reduction in front overhang poses a problem in meeting both the requirements with limited space. This paper outlines vehicle case study in order to optimize the design of Bumper Beam structure, for complying with regulatory requirements while satisfying the styling intent.
Technical Paper

Methodology for Establishing Damage Criteria Using Probability Distribution Function on Component Level Tests - a Case Study

2016-02-01
2016-28-0041
Automobile components are usually subjected to complex varying loads. Thus, fatigue failure is a common mode of failure in automobile components. Accurately predicting the fatigue life is the key point for light weight and also reliability design of automobile components. Various life prediction theories are being used in the automotive industry for damage analysis using material S-N curves. However, due to variability in manufacturing, material spec etc. it is difficult to predict the experimental lives using conventional theories. Probability based statistical modeling is prevalent in the industry for life prediction. Probabilistic plots of cycles to failure to constant amplitude loads are plotted and used for prediction purpose. As the component is subjected to varying loads in real world, defining a single parameter i.e. damage would be more relevant compared to loads.
Technical Paper

Consideration of Indian Turbans in Vehicle Design

2016-02-01
2016-28-0044
India is a country of diversity. From North to South, east to west, one can find altogether different culture, religions, spoken languages, foods, weather conditions, people lifestyles, dressing styles etc. This vast diversity of India poses a great challenge in front of Indian Automobile Manufacturers, so as to assimilate all the requirements (of this big nation) in one single car (design). For example, many people in India wear turban (out of their religious beliefs or cultural heritage). So, is it required to keep enough consideration for Turban wearing population in vehicle design? Turban, unlike caps or hats, is something which is tied on the head (not just only kept). It is something which cannot be removed whenever required. So, it can somehow be considered as an integral part of body (as an added head dimension). So, it becomes all the more important to thoroughly understand this aspect & keep a consideration for the same in vehicle design.
Technical Paper

Optimization of Bumper Beam Structure for Pedestrian Protection and Low Speed Bumper Impact

2016-02-01
2016-28-0210
The biggest challenge in vehicle BIW design today is to make a light, cost effective and energy absorbing structure. With the increasing competition as well as increasing customer awareness, today’s vehicle has to satisfy several aesthetic and functional requirements besides the mandatory regulatory requirements. While working on global platform, it is challenging to comply with both pedestrian protection and low speed bumper impact (ECE-R42) and at the same time meeting the styling intent of reducing the front overhang. Pedestrian lower leg compliance demands space between bumper member and bumper, a condition that reduces the space available for energy absorption during low speed impact (ECE-R42). Therefore, reduction in front overhang poses a problem in meeting both the requirements with limited space. This paper outlines vehicle case study in order to optimize the design of Bumper Beam structure, for complying with regulatory requirements while satisfying the styling intent.
Technical Paper

Thermal Radiation Heat Transfer Model and Its Application for Automobile Exhaust Components

2016-02-01
2016-28-0051
Shielding vehicle underbody or engine room components from exhaust heat is becoming a difficult task with increasing packaging constraints, which lead to the proximity of components with high temperatures of the exhaust systems. Heat insulators are provided to protect various components from exhaust system parts. Generally the requirement of heat insulators are fixed on the basis of benchmarked temperatures measured on vehicles with similar layout, during the initial phase of vehicle design. Also various CFD techniques are available to predict the surface temperatures on components in order to determine the necessity of a heat insulator. The aforementioned techniques use radiation and convection heat transfer effects on a complete vehicle model and the overall process generally takes considerable time to provide the results. This paper deals with a theoretical approach to predict the temperatures on nearby components due to exhaust system heat.
Technical Paper

A Study of Engine Mount Optimisation of Three-Cylinder Engine through Multi-Body Dynamic Simulation and Its Verification by Vehicle Measurement

2015-01-14
2015-26-0126
Three-cylinder Engine without balancer shaft is a recent trend towards development of lightweight and fuel-efficient powertrain for passenger car. In addition, customer's expectation of superior NVH inside vehicle cabin is increasing day by day. Engine mounts address majority of the NVH issues related to transfer of vibration from engine to passenger cabin. Idle vibration isolation for a three-cylinder engine is a challenging task due to possibility of overlapping of Powertrain's rigid body modes with engine's firing frequency. This Overlapping of rigid body can be avoided either by modifying mount characteristic or by changing the position of mounts based on multi-body-dynamics (MBD) simulation. This paper explains about two types of engine mounting system for a front-wheel drive transversely mounted three-cylinder engine. The base vehicle was having three-point mounting system i.e. all three engine mounts were pre-loaded.
Technical Paper

Latch Failure Prediction for Side Door Intrusion Test in CAE and Its Correlation with Physical Testing

2015-01-14
2015-26-0159
During vehicle development, numerous test are done to ensure safety & durability of the vehicle. One such test prescribed by regulation (IS 12009:1995) is side door intrusion test (SDIT). This test evaluates strength requirement of a side door of passenger cars to minimize the safety hazards caused by intrusion into passenger compartment in a side impact accident viz., initial, intermediate and peak crush resistance. In current scenario the passenger car manufacturers are striving hard on cost reduction by reducing the development cost. Thus, to predict the exact vehicle performance before its prototype stage is vital. This can be achieved by evaluating performance by the help of Computer aided engineering (CAE) During the SDIT, the load is applied to the outer surface of the door in an inward direction. This inward force applied by loading device is resisted by the door assembly, while door is pivoted at door latch and hinge.
Technical Paper

Study of Impact of Shot Size Ratio in the Process of Shot Peening on Fatigue Life of Suspension Coil Spring

2014-04-01
2014-01-0974
Hardened steel is the majorly used raw material for automotive components. In spite of its abundance, its application is limited due to low fatigue life in dynamic loading. Shot peening is one of the identified processes to improve the fatigue life of the ductile steel by inducing the work hardening & surface improvement. The process of shot peening involves the bombardment of shots on the component surface. As the process & technique, the shot size selection plays very important role in the fatigue life improvement as it alters the results substantially. Also during the process, shot size decreases due to the normal wear of the shots after hitting the component surface. As a result, there is always a ratio of various sizes of the shots involved in the process. Therefore it becomes imperative to control the shot size ratio for obtaining the required work hardening & possible fatigue life improvement.
Technical Paper

Evaluation of Sound Radiation from Exhaust Muffler Shell-A Novel Experimental Approach

2013-03-25
2013-01-0116
Shorter product development cycles, densely packed engine compartments and intensified noise legislation has increased the need for accurate predictions of passenger cars Exhaust system noise at early design stages. The urgent focus on the increasing CO2 emissions and the efficiency of IC-engines as well as upcoming technologies might adversely affect the noise emission from an exhaust system, so it is becoming increasingly important to evaluate the sub system level noise emissions in an early design stage in order to predict and optimize the exhaust system performance. Engine performance and vehicle NVH characteristics are two important parameters on which the design of the exhaust system has major influence. The reduction of exhaust noise is a very important factor in controlling the exterior and interior noise levels of vehicles, particularly to reach future target values of the pass-by noise and sound engineering for the vehicle.
X