Refine Your Search

Topic

Search Results

Journal Article

Reduction of Cold-Start Emissions through Valve Timing in a GDI Engine

2016-04-05
2016-01-0827
This work examines the effect of valve timing during cold crank-start and cold fast-idle (1200 rpm, 2 bar NIMEP) on the emissions of hydrocarbons (HC) and particulate mass and number (PM/PN). Four different cam-phaser configurations are studied in detail: 1. Baseline stock valve timing. 2. Late intake opening/closing. 3. Early exhaust opening/closing. 4. Late intake phasing combined with early exhaust phasing. Delaying the intake valve opening improves the mixture formation process and results in more than 25% reduction of the HC and of the PM/PN emissions during cold crank-start. Early exhaust valve phasing results in a deterioration of the HC and PM/PN emissions performance during cold crank-start. Nevertheless, early exhaust valve phasing slightly improves the HC emissions and substantially reduces the particulate emissions at cold fast-idle.
Technical Paper

Modeling of the Rotary Engine Apex Seal Lubrication

2015-09-01
2015-01-2035
The Wankel rotary engine is more compact than conventional piston engines, but its oil and fuel consumption must be reduced to satisfy emission standards and customer expectations. A key step toward this goal is to develop a better understanding of the apex seal lubrication to reduce oil injection while reducing friction and maintaining adequate wear. This paper presents an apex seal dynamics model capable of estimating relative wear and predicting friction, by modeling the gas and oil flows at the seal interfaces with the rotor housing and groove flanks. Model predictions show that a thin oil film can reduce wear and friction, but to a limited extent as the apex seal running face profile is sharp due to the engine kinematics.
Technical Paper

An Integrated Approach to Requirements Development and Hazard Analysis

2015-04-14
2015-01-0274
The introduction of new safety critical features using software-intensive systems presents a growing challenge to hazard analysis and requirements development. These systems are rich in feature content and can interact with other vehicle systems in complex ways, making the early development of proper requirements critical. Catching potential problems as early as possible is essential because the cost increases exponentially the longer problems remain undetected. However, in practice these problems are often subtle and can remain undetected until integration, testing, production, or even later, when the cost of fixing them is the highest. In this paper, a new technique is demonstrated to perform a hazard analysis in parallel with system and requirements development. The proposed model-based technique begins during early development when design uncertainty is highest and is refined iteratively as development progresses to drive the requirements and necessary design features.
Technical Paper

Development of a SIL, HIL and Vehicle Test-Bench for Model-Based Design and Validation of Hybrid Powertrain Control Strategies

2014-04-01
2014-01-1906
Hybrid powertrains with multiple sources of power have generated new control challenges in the automotive industry. Purdue University's participation in EcoCAR 2, an Advanced Vehicle Technology Competition managed by the Argonne National Laboratories and sponsored by GM and DOE, has provided an exciting opportunity to create a comprehensive test-bench for the development and validation of advanced hybrid powertrain control strategies. As one of 15 competing university teams, the Purdue EcoMakers are re-engineering a donated 2013 Chevrolet Malibu into a plug-in parallel- through-the-road hybrid-electric vehicle, to reduce its environmental impact without compromising performance, safety or consumer acceptability. This paper describes the Purdue team's control development process for the EcoCAR 2 competition.
Technical Paper

In Situ Control of Lubricant Properties for Reduction of Power Cylinder Friction through Thermal Barrier Coating

2014-04-01
2014-01-1659
Lowering lubricant viscosity to reduce friction generally carries a side-effect of increased metal-metal contact in mixed or boundary lubrication, for example near top ring reversal along the engine cylinder liner. A strategy to reduce viscosity without increased metal-metal contact involves controlling the local viscosity away from top-ring-reversal locations. This paper discusses the implementation of insulation or thermal barrier coating (TBC) as a means of reducing local oil viscosity and power cylinder friction in internal combustion engines with minimal side-effects of increased wear. TBC is selectively applied to the outside diameter of the cylinder liner to increase the local oil temperature along the liner. Due to the temperature dependence of oil viscosity, the increase in temperature from insulation results in a decrease in the local oil viscosity.
Technical Paper

Optimizing Base Oil Viscosity Temperature Dependence For Power Cylinder Friction Reduction

2014-04-01
2014-01-1658
Lubricant viscosity along the engine cylinder liner varies by an order of magnitude due to local temperature variation and vaporization effects. Tremendous potential exists for fuel economy improvement by optimizing local viscosity variations for specific operating conditions. Methods for analytical estimation of friction and wear in the power-cylinder system are reviewed and used to quantify opportunities for improving mechanical efficiency and fuel economy through lubricant formulation tailored specifically to liner temperature distributions. Temperature dependent variations in kinematic viscosity, density, shear thinning, and lubricant composition are investigated. Models incorporating the modified Reynolds equation were used to estimate friction and wear under the top ring and piston skirt of a typical 11.0 liter diesel engine.
Technical Paper

A Methodology for Evaluating Body Architecture Concepts Using Technical Cost Modeling

2011-04-12
2011-01-0767
The ability to make accurate decisions concerning early body-in-white architectures is critical to an automaker since these decisions often have long term cost and weight impacts. We address this need with a methodology which can be used to assist in body architecture decisions using process-based technical cost modeling (TCM) as a filter to evaluate alternate designs. Despite the data limitations of early design concepts, TCM can be used to identify key trends for cost-effectiveness between design variants. A compact body-in-white architecture will be used as a case study to illustrate this technique. The baseline steel structure will be compared to several alternate aluminum intensive structures in the context of production volume.
Journal Article

Study of On-Board Ammonia (NH3) Generation for SCR Operation

2010-04-12
2010-01-1071
Mechanisms of NH₃ generation using LNT-like catalysts have been studied in a bench reactor over a wide range of temperatures, flow rates, reformer catalyst types and synthetic exhaust-gas compositions. The experiments showed that the on board production of sufficient quantities of ammonia on board for SCR operation appeared feasible, and the results identified the range of conditions for the efficient generation of ammonia. In addition, the effects of reformer catalysts using the water-gas-shift reaction as an in-situ source of the required hydrogen for the reactions are also illustrated. Computations of the NH₃ and NOx kinetics have also been carried out and are presented. Design and impregnation of the SCR catalyst in proximity to the ammonia source is the next logical step. A heated synthetic-exhaust gas flow bench was used for the experiments under carefully controlled simulated exhaust compositions.
Technical Paper

Modeling Costs and Fuel Economy Benefits of Lightweighting Vehicle Closure Panels

2008-04-14
2008-01-0370
This paper illustrates a methodology in which complete material-manufacturing process cases for closure panels, reinforcements, and assembly are modeled and compared in order to identify the preferred option for a lightweight closure design. First, process-based cost models are used to predict the cost of lightweighting the closure set of a sample midsized sports utility vehicle (SUV) via material and process substitution. Weight savings are then analyzed using a powertrain simulation to understand the impact of lightweighting on fuel economy. The results are evaluated in the context of production volume and total mass change.
Technical Paper

Assessing the Windage Tray Blockage Effect on Aeration in the Oil Sump

2007-10-29
2007-01-4109
The windage tray effect on aeration in the engine sump was assessed by replacing much of the windage tray materials with wire meshes of various blockages. The mesh was to prevent direct impact of the oil drops spinning off the crank shaft onto the sump oil, and simultaneously, to provide sufficient drainage so that there was no significant build up of windage tray oil film that would interact with these droplets. Aeration at the oil pump inlet was measured by X-ray absorption in a production V-6 SI engine motoring at 2000 to 6000 rpm. Within experimental uncertainty, these windage tray changes had no effect on aeration. Thus activities in the sump such as the interaction of the oil drops spun from the crank shaft with the sump oil or with the windage tray, and the agitation of the sump oil by the crank case gas, were not major contributors to aeration at the pump inlet.
Technical Paper

The Mars Gravity Biosatellite: Atmospheric Reconditioning Strategies for Extended-Duration Rodent Life Support

2007-07-09
2007-01-3224
We present results which verify the design parameters and suggest performance capabilities/limitations of the Mars Gravity Biosatellite's proposed atmospherics control subassembly. Using a combination of benchtop prototype testing and analytic techniques, we derive control requirements for ammonia. Further, we demonstrate the dehumidification performance of our proposed partial gravity condensing heat exchanger. Ammonia production is of particular concern in rodent habitats. The contaminant is released following chemical degradation of liquid waste products. The rate of production is linked to humidity levels and to the design of habitat modules in terms of bedding substrate, air flow rates, choice of structural materials, and other complex factors. Ammonia buildup can rapidly lead to rodent health concerns and can negatively impact scientific return.
Technical Paper

Modeling and Measurement of Tribological Parameters between Piston Rings and Liner in Turbocharged Diesel Engine

2007-04-16
2007-01-1440
This paper presents tribological modeling, experimental work, and validation of tribology parameters of a single cylinder turbocharged diesel engine run at various loads, speeds, intake boost pressures, and cylinder liner temperatures. Analysis were made on piston rings and liner materials, rings mechanical and thermal loads, contact pressure between rings and liner, and lubricant conditions. The engine tribology parameters were measured, and used to validate the engine tribology models. These tribology parameters are: oil film thickness, coefficient of friction between rings and liner, friction force, friction power, friction torque, shear rate, shear stress and wear of the sliding surfaces. In order to measure the oil film thickness between rings and liner, a single cylinder AVL turbocharged diesel engine was instrumented to accept the difference in voltage drop method between rings, oil film, and liner.
Technical Paper

Engine Wear Modeling with Sensitivity to Lubricant Chemistry: A Theoretical Framework

2007-04-16
2007-01-1566
The life of an automotive engine is often limited by the ability of its components to resist wear. Zinc dialkyldithiophosphate (ZDDP) is an engine oil additive that reduces wear in an engine by forming solid antiwear films at points of moving contact. The effects of this additive are fairly well understood, but there is little theory behind the kinetics of antiwear film formation and removal. This lack of dynamic modeling makes it difficult to predict the effects of wear at the design stage for an engine component or a lubricant formulation. The purpose of this discussion is to develop a framework for modeling the formation and evolution of ZDDP antiwear films based on the relevant chemical pathways and physical mechanisms at work.
Technical Paper

Comparative Analysis of Automotive Powertrain Choices for the Next 25 Years

2007-04-16
2007-01-1605
This paper assesses the potential improvement of automotive powertrain technologies 25 years into the future. The powertrain types assessed include naturally-aspirated gasoline engines, turbocharged gasoline engines, diesel engines, gasoline-electric hybrids, and various advanced transmissions. Advancements in aerodynamics, vehicle weight reduction and tire rolling friction are also taken into account. The objective of the comparison is the potential of anticipated improvements in these powertrain technologies for reducing petroleum consumption and greenhouse gas emissions at the same level of performance as current vehicles in the U.S.A. The fuel consumption and performance of future vehicles was estimated using a combination of scaling laws and detailed vehicle simulations. The results indicate that there is significant potential for reduction of fuel consumption for all the powertrains examined.
Technical Paper

Development and Implementation of a Powertrain Electrical System Simulator with Computer-Controlled Fault Generation

2006-04-03
2006-01-1599
To manage the function of a vehicle's engine, transmission, and related subsystems, almost all modern vehicles make use of one or more electronic controllers running embedded software, henceforth referred to as a Powertrain Controller System or PCS. Fully validating this PCS is a necessary step of vehicle development, and the validation process requires extensive amounts of testing. Within the automotive industry, more and more of this validation testing is being performed using Hardware-in-the-Loop (HIL) simulators to automate the extensive test sequences. A HIL simulation typically mates the physical PCS to a closed-loop real time computer simulation of a powertrain. Interfacing the physical PCS hardware to a powertrain simulation requires the HIL simulator to have extensive signal input/output (I/O) electronics and simulated actuator electrical loading.
Technical Paper

The Use of Semi-Solid Rheocasting (SSR) for Aluminum Automotive Castings

2003-03-03
2003-01-0433
Semi-solid metal (SSM) casting has long been identified as a high-volume process for producing safety-critical and structural automotive castings, but cost and complexity issues have limited its widespread commercial acceptance. Rheocasting, an SSM process that creates semi-solid slurry directly from liquid metal, eliminates the cost disadvantages of the process. However, the majority of rheocasting processes are complex and difficult to operate in the foundry environment. Recent work at MIT has led to the fundamental discovery that application of heat removal and convection as a molten alloy cools through the liquidus creates a non-dendritic, semi-solid slurry. A new process based on this understanding, S.S.R.™ (Semi-Solid Rheocasting), simplifies the rheocasting process by controlling heat removal and convection of an alloy during cooling using an external device. Solution heat treatable castings have been produced in a horizontal die casting machine with the S.S.R.™ process.
Technical Paper

Future Light-Duty Vehicles: Predicting their Fuel Consumption and Carbon-Reduction Potential

2001-03-05
2001-01-1081
The transportation sector in the United States is a major contributor to global energy consumption and carbon dioxide emission. To assess the future potentials of different technologies in addressing these two issues, we used a family of simulation programs to predict fuel consumption for passenger cars in 2020. The selected technology combinations that have good market potential and could be in mass production include: advanced gasoline and diesel internal combustion engine vehicles with automatically-shifting clutched transmissions, gasoline, diesel, and compressed natural gas hybrid electric vehicles with continuously variable transmissions, direct hydrogen, gasoline and methanol reformer fuel cell hybrid electric vehicles with direct ratio drive, and battery electric vehicle with direct ratio drive.
Technical Paper

Numerical Modeling of Fuel Sprays in DISI Engines Under Early-Injection Operating Conditions

2000-03-06
2000-01-0273
Numerical calculations of the fuel spray structure from a high-pressure swirl injector were used to enable the interpretation of experimental observations obtained in hot, hollow-cone fuel sprays issued into sub-atmospheric-pressure environments. The experiments show that the spray becomes narrower, more compact, but with a relatively long penetration depth. Model input parameters, including the droplet size distribution, early vapor production, and initial cone angle, were modified to determine which spray characteristics are important in recreating observed spray structures. A very small mean droplet diameter is needed to recreate the experimentally observed structure of the high-temperature, low-pressure sprays. Vapor addition to the emerging spray is then required to increase the axial penetration and provide the observed vapor core.
Technical Paper

Alternative Tooling Technologies for Low Volume Stamping

1999-09-28
1999-01-3216
Low volume manufacturing has become increasingly important for the automotive industry. Globalization trends have led automakers and their suppliers to operate in developing regions where minimum efficient scales can not always be achieved. With proper maintenance, standard cast iron stamping tools can be used to produce millions of parts, but require large investments. Thus at high production volumes, the impact of the tooling investment on individual piece costs is minimized. However, at low volumes there is a substantial cost penalty. In light of the trends towards localized manufacturing and relatively low demands in some developing markets, low cost stamping tools are needed. Several alternate tooling technologies exist, each of which require significantly lower initial investments, but suffer from greatly reduced tool lives. However, the use of these technologies at intermediate to high volumes requires multiple tool sets thus eliminating their cost advantage.
Technical Paper

Economic Analysis of Hydro-Mechanical Sheet Metal Forming

1999-09-28
1999-01-3207
Recent industry trends have resulted in growing interest among automakers in low to medium volume manufacturing. The expansion of automobile production into developing economies and the desire to produce specialized vehicles for niche markets have pressed the automakers to find cost effective solutions for manufacturing at low volumes, particularly with regard to sheet metal forming. Conventional high volume stamping operations rely heavily on achieving minimum scale economies which occur at about 200,000 parts per year. These scale economies are mainly dictated by the efficient use of the standard, expensive cast iron dies. These dies can cost well over one million dollars depending on the part, and in return offer tool lives over 5 million strokes. Die investment can be reduced by changing the stamping process technology. Hydro-mechanical forming has been proposed as a promising low volume alternative to conventional stamping.
X