Refine Your Search

Topic

Author

Search Results

Technical Paper

Modeling of the Rotary Engine Apex Seal Lubrication

2015-09-01
2015-01-2035
The Wankel rotary engine is more compact than conventional piston engines, but its oil and fuel consumption must be reduced to satisfy emission standards and customer expectations. A key step toward this goal is to develop a better understanding of the apex seal lubrication to reduce oil injection while reducing friction and maintaining adequate wear. This paper presents an apex seal dynamics model capable of estimating relative wear and predicting friction, by modeling the gas and oil flows at the seal interfaces with the rotor housing and groove flanks. Model predictions show that a thin oil film can reduce wear and friction, but to a limited extent as the apex seal running face profile is sharp due to the engine kinematics.
Journal Article

Diesel Combustion Noise Reduction by Controlling Piston Vibration

2015-04-14
2015-01-1667
It has been required recently that diesel engines for passenger cars meet various requirements, such as low noise, low fuel consumption, low emissions and high power. The key to improve the noise is to reduce a combustion noise known as “Diesel knock noise”. Conventional approaches to reduce the diesel knock are decreasing combustion excitation force due to pilot/pre fuel injection, adding ribs to engine blocks or improving noise transfer characteristics by using insulation covers. However, these approaches have negative effects, such as deterioration in fuel economy and increase in cost/weight. Therefore, modification of engine structures is required to reduce it. We analyzed noise transfer paths from a piston, a connecting rod, a crank shaft to an engine block and vibration behavior during engine operation experimentally, and identified that piston resonance was a noise source.
Journal Article

Oil Transport Cycle Model for Rotary Engine Oil Seals

2014-04-01
2014-01-1664
The rotary engine provides high power density compared to piston engine, but one of its downside is higher oil consumption. A model of the oil seals is developed to calculate internal oil consumption (oil leakage from the crankcase through the oil seals) as a function of engine geometry and operating conditions. The deformation of the oil seals trying to conform to housing distortion is calculated to balance spring force, O-ring and groove friction, and asperity contact and hydrodynamic pressure at the interface. A control volume approach is used to track the oil over a cycle on the seals, the rotor and the housing as the seals are moving following the eccentric rotation of the rotor. The dominant cause of internal oil consumption is the non-conformability of the oil seals to the housing distortion generating net outward scraping, particularly next to the intake and exhaust port where the housing distortion valleys are deep and narrow.
Journal Article

Visualization of the Rotary Engine Oil Transport Mechanisms

2014-04-01
2014-01-1665
The rotary engine provides high power density compared to piston engine, but one of its downside is higher oil consumption. In order to better understand oil transport, a laser induced fluorescence technique is used to visualize oil motion on the side of the rotor during engine operation. Oil transport from both metered oil and internal oil is observed. Starting from inside, oil accumulates in the rotor land during inward motion of the rotor created by its eccentric motion. Oil seals are then scraping the oil outward due to seal-housing clearance asymmetry between inward and outward motion. Cut-off seal does not provide an additional barrier to internal oil consumption. Internal oil then mixes with metered oil brought to the side of the rotor by gas leakage. Oil is finally pushed outward by centrifugal force, passes the side seals, and is thrown off in the combustion chamber.
Technical Paper

Fuel Spray Combustion of Waste Cooking Oil and Palm Oil Biodiesel: Direct Photography and Detailed Chemical Kinetics

2013-10-14
2013-01-2554
This paper studies the ignition processes of two biodiesel from two different feedstock sources, namely waste cooked oil (WCO) and palm oil (PO). They were investigated using the direct photography through high-speed video observations and detailed chemical kinetics. The detailed chemical kinetics modeling was carried out to complement data acquired using the high-speed video observations. For the high-speed video observations, an image intensifier combined with OH* filter connected to a high-speed video camera was used to obtain OH* chemiluminscence image near 313 nm. The OH* images were used to obtain the experimental ignition delay of the biodiesel fuels. For the high-speed video observations, experiments were done at an injection pressure of 100, 200 and 300 MPa using a 0.16 mm injector nozzle.
Technical Paper

A General Method of Life Cycle Assessment

2012-04-16
2012-01-0649
In previous Life Cycle Assessment (LCA) methods, environmental burden items to be analyzed, prior to a life cycle inventory analysis, were assumed as the main factors of environmental problems regardless of the product category. Next, the life cycle inventory analysis, in which the total amount of environmental burden items emitted during the life cycle of a product was calculated, and an environmental impact assessment were performed. The environmental impact assessment was based on the initially assumed environmental burden items. The process, in other words, was a particular solution based on this assumption. A general solution unconstrained by this assumption was necessary. The purpose of this study was to develop a general method of LCA that did not require such initially assumed environmental burden items, and to make it possible to perform a comprehensive environmental impact assessment and strategically reduce environmental burden of a product.
Journal Article

Combustion Technology Development for a High Compression Ratio SI Engine

2011-08-30
2011-01-1871
Internal combustion engines still play a vital role in realizing the low carbon society. For spark ignition engines, further improvement in thermal efficiency can be achieved by increasing both compression and specific heat ratios. In the current work, the authors developed practical technologies to prevent output power loss due to knocking at full load, which is a critical issue for increasing compression ratio. These new technologies allowed to increase the compression ratio significantly and provide an equivalent torque level as a conventional engine. As a result, thermal efficiency has been improved at partial load.
Technical Paper

Visualization Study on Lubricant Oil Film Behavior around Piston Skirt

2011-08-30
2011-01-2119
Understanding of the oil film formation mechanism around a piston skirt is very important to reduce the friction loss at piston skirt. We have investigated lubricant oil film behavior around piston skirt which is affected by piston slap under motoring condition. In this study, a cylinder liner of a commercial engine is displaced with a quartz cylinder. Photographic observations of oil film behavior between the cylinder liner and the piston skirt were performed with two kinds of methods; direct monochromatic photography and LIF (Laser Induced Fluorescence) image using a high speed camera. The oil film distributions were determined from oil boundary observed by the direct photography, and oil film thickness was estimated from the LIF intensity. Differences of the oil film distributions and the oil film thickness depending on piston shapes were investigated for four types of pistons.
Technical Paper

New Methodology of Life Cycle Assessment for Clean Energy Vehicle and New Car Model

2011-04-12
2011-01-0851
Mazda announced that all customers who purchase Mazda cars are provided with the joy of driving and excellent environmental and safety performance under slogan of "Sustainable Zoom-Zoom" long-term vision for technology development. The purpose of this study is to develop a new approach of Life Cycle Assessment (abbreviated to LCA) to be applied to clean energy vehicles and new car models. The improvement of both environmental performance, e.g., fuel consumption, exhaust emissions, vehicle weight reduction, and LCA that is a useful methodology to assess the environmental load of automobiles for their lifecycles has become more important. LCA by inventory analysis, for RX-8 Hydrogen RE as a rotary engine vehicle used hydrogen as clean energy, was carried out and disclosed the world for the first time. LCA for new Mazda 5 was carried out as the portfolio of all models, previously only the specific model equipped with fuel efficiency device based on ISO14040.
Technical Paper

Spot Friction Welding of Aluminum to Steel

2007-04-16
2007-01-1703
Spot friction welding (SFW) is a cost-effective spot joining technology for aluminum sheets compared with resistance spot welding (RSW) [1]. In this study, coated mild steel was spot friction welded to 6000 series aluminum using a tool with shoulder diameter of 10 mm and welding conditions of 1500-2000 rpm and time of 5 s. Testing showed that tensile shear strength increased as the solidus temperature of the coating on the steel decreased. Microstructure characterizations of steel/Al joint interfaces showed that zinc from the coatings was incorporated into the stir nuggets and that intermetallic phases may have formed but not in continuous layers. Some Al-Zn oxides that appeared to be amorphous were also found in the joint interfaces.
Technical Paper

Application of Plasma Welding to Tailor- Welded Blanks

2003-10-27
2003-01-2860
In recent years, improving fuel efficiency and collision safety are important issue. We have worked on a new construction method to develop body structure which is light weight and strong/stiff. We adopt multi type Tailor-Welded Blanks (TWB) which is formed after welding several steel sheets for ATENZA (MAZDA 6), NEW DEMIO (MAZDA 2), and RX-8. This is a technology to consistently improve of such product properties and to reduce costs. Laser welding is a common TWB welding method, but for further equipment cost reductions and productivity improvements, we have developed a higher welding speed and robust plasma welding and introduced this to mass production. We introduce this activity and results in this report.
Technical Paper

Vehicle Front Structure in Consideration of Compatibility

2003-05-19
2003-06-0206
A structure which effectively improves compatibility in a vehicle-to-vehicle frontal impact has been considered focusing on sub-frame structure that disperses applied force with multiple load paths. Evolved sub-frame structure has been studied by CAE with RADIOSS to search the possibility to reduce aggressivity and to improve self-protection at the same time. Vehicle models used for this compatibility study were a large saloon car with sub-frame and a small family car without sub-frame. The large saloon car had three different front structures: original, forward-extended sub-frame, and original with 25%-stiffness reduced structures. The types of collision contained four different crash modes in a combination of lateral overlap rate difference and side member height difference.
Technical Paper

An Analysis of Ambient Air Entrainment into Split Injection D.I. Gasoline Spray by LIF-PIV Technique

2002-10-21
2002-01-2662
Effects of split injection, with a relatively short time interval between the two sprays, on the spray development process, and the air entrainment into the spray, were investigated by using laser induced fluorescence and particle image velocimetry (LIF-PIV) techniques. The velocities of the spray and the ambient air were measured. The cumulative mass of the ambient air entrained into the spray was calculated by using the entrainment velocity normal to the spray boundary. The vortex structure of the spray, formed around the leading edge of the spray, showed a true rotating flow motion at low ambient pressures of 0.1 MPa, whereas at 0.4 MPa, it was not a true rotating flow, but a phenomenon of the small droplets separating from the leading edge of the spray and falling behind, due to air resistance. The development processes of the 2nd spray were considerably different from that of the 1st spray because the 2nd spray was injected into the flow fields formed by the 1st spray.
Technical Paper

Development of a Technique to Strengthen Body Frame with Structural Foam

2001-03-05
2001-01-0313
A technique to strengthen body frame with a polymeric structural foam has been developed with benefits of reducing vehicle weight and improving drivability and fuel economy. The idea of this new technology was evolved from the concept that body frame strength will increase drastically if the body frames are prevented from folding on collision. The energy of a collision impact would be effectively absorbed if weak portions of body frames are reinforced by a high strength structural foam. The new technology composed of the high strength structural foam and a light-weight frame structure with partial foam filling is reported here.
Technical Paper

Development of cabin air filter with aldehyde capture function

2000-06-12
2000-05-0343
Aldehydes are the cause of sick house syndrome or chemical sensitivity and have harmful influences for human beings. In the cabin of vehicle, aldehydes which are included in the volatilization gas from the interior materials, DE emission gas in intake air, cigarette smoke and so on spoil the comfortableness. Active carbon, which has been used as an adsorbent, shows an excellent removal efficiency for most of the gas components by physical adsorption. But for aldehydes, it has difficulty because aldehydes are hard to be adsorbed physically. We have developed new aldehydes adsorbent undergoing addition reaction with gaseous aldehydes on its surface. Aldehydes capture material (ACM) make use of the chemical reaction using a resorcin as a reagent and an H-type zeolite as a water-containing support, and active hydrogen is used as a catalyst to promote the reaction. In addition, we have applied ACM to cabin air filter (CAF) of vehicle.
Technical Paper

Development of Disk Brake Rotor Utilizing Aluminum Metal Matrix Composite

1997-02-24
970787
Disk brake rotors require reduced unsprung weight and improved cooling ability for improved fade performance. Automotive brake rotors made from aluminum metal matrix composites (MMC) were evaluated by dynamometer and vehicle tests for the required improvement. The friction and wear performance and the thermal response during fade stops were compared with those of commercially produced gray cast iron (GCI) rotors. It was proved that MMC is a very effective material to replace GCI for brake rotor application, as it reduces unsprung weight and decreases maximum operation temperature of the brake system.
Technical Paper

Development of Capacitance-Loaded Window Antenna for AM/FM Car Radios

1995-02-01
950180
Mazda established an original design methodology combining a capacitive coupling technology and transmission line theory, to develop a high performance window antenna for AM/FM radios which construction is very simple to construct and requires no use of any antenna boosters or matching circuits. This paper introduces the design methodology and performance characteristics of the new antenna as well as its application to the production '95 model Mazda 929.
Technical Paper

Development of Magnesium Forged Wheel

1995-02-01
950422
Magnesium has the lowest specific gravity of all metals used for structural members. The application of magnesium for a road wheel leads to improved vehicle handling and drivability because of the reduction of an unsprung weight. The authors have developed new magnesium alloy which shows excellent mechanical properties and attained a magnesium forged road wheel that is 30% lighter than aluminum wheels.
Technical Paper

Mechanism of Combustion Chamber Deposit Interference and Effects of Gasoline Additives on CCD Formation

1995-02-01
950741
Recently, an audible clattering noise has been noticed in some vehicles during cold engine starts, mainly in the U.S. The clattering is referred to by various names, such as “carbon knock,” “carbon rap,” “mechanical knock” and “combustion chamber deposit interference (CCDI).” CCDI is believed to be caused by the deposit formation in the combustion chamber. In the research effort described here, CCDI was successfully reproduced in a 2.5-liter multipoint injection engine with a polyolefin amine gasoline additive. It was determined that the CCDI was caused by mechanical contact between the piston top and the cylinder head deposits. The vibration due to CCDI originated mainly at the thrust side of the piston right after top-dead-center on compression stroke and was characterized by a high frequency response. Combustion chamber deposit (CCD) formation depends on many factors, including gasoline additives.
Technical Paper

Development of Lean Burn Catalyst

1995-02-01
950746
A new type of three way catalyst for lean engine was developed in order to reduce hydrocarbon (HC), carbon-monoxide (CO) and nitrogen-oxides (NOx) in lean exhaust gas. This catalyst has a base support material of MFI zeolite loaded with active metals including platinum (Pt), iridium (Ir) and rhodium (Rh). It showed good catalytic activity and thermal durability on a lean engine. This catalyst made it possible to enlarge the lean operating region of the lean burn engine. It showed the NOx reduction of 51% in Japanese 10-15 mode emission test and the emissions were found low enough to satisfy the new Japanese emission standards. Consequently, fuel economy of the lean vehicle with this catalyst has been improved about 16% in comparison with a comparable current stoichiometric combustion vehicle. This catalyst has been mass-produced for Mazda 323 lean burn vehicle (Z-Lean) for the Japanese domestic market.
X