Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Combustion and Emissions of Paired-Nozzle Jets in a Pilot-Ignited Direct-Injection Natural Gas Engine

2016-04-05
2016-01-0807
This paper examines the combustion and emissions produced using a prototype fuel injector nozzle for pilot-ignited direct-injection natural gas engines. In the new geometry, 7 individual equally-spaced gas injection holes were replaced by 7 pairs of closely-aligned holes (“paired-hole nozzle”). The paired-hole nozzle was intended to reduce particulate formation by increasing air entrainment due to jet interaction. Tests were performed on a single-cylinder research engine at different speeds and loads, and over a range of fuel injection and air handling conditions. Emissions were compared to those resulting from a reference injector with equally spaced holes (“single-hole nozzle”). Contrary to expectations, the CO and PM emissions were 3 to 10 times higher when using the paired-hole nozzles. Despite the large differences in emissions, the relative change in emissions in response to parametric changes was remarkably similar for single-hole and paired-hole nozzles.
Technical Paper

Application of Fuel Momentum Measurement Device for Direct Injection Natural Gas Engines

2015-04-14
2015-01-0915
In direct-injection engines, combustion and emission formation is strongly affected by injection quality. Injection quality is related to mass-flow rate shape, momentum rate shape, stability of pulses as well as mechanical and hydraulic delays associated with fuel injection. Finding these injector characteristics aids the interpretation of engine experiments and design of new injection strategies. The goal of this study is to investigate the rate of momentum for the single and post injections for high-pressure direct-injection natural gas injectors. The momentum measurement method has been used before to study momentum rate of injection for single and split injections for diesel sprays. In this paper, a method of momentum measurement for gas injections is developed in order to present transient momentum rate shape during injection timing. In this method, a gas jet impinges perpendicularly on a pressure transducer surface.
Technical Paper

Flow Characteristics of a Gas-Blast Fuel Injector for Direct-Injection Compression-Ignition Engines

2009-06-15
2009-01-1857
Natural gas has a high auto-ignition temperature, therefore natural gas engines use sparks, hot surfaces or separate diesel pilot injects to promote ignition. For example, the high-pressure direction-injection (HPDI) system, available commercially for heavy-duty truck engines, uses a small diesel injection just prior to the main gas injection. A new type of HPDI injector has been developed that injections diesel and gas simultaneously through the same holes. In this paper the operation and flow characteristics of this “co-injector” will be discussed. An injection visualization chamber (IVC) was developed for optical characterization of injections into a chamber at pressures up to 80 bar. A fuel supply system was constructed for precise control of injector fueling and injection timing. Diesel and natural gas are replaced by VISCOR ® and nitrogen to study non-reacting flows.
Journal Article

Multiple Injection Strategy in a Direct-Injection Natural Gas Engine with Entrained Diesel

2009-06-15
2009-01-1954
A new fuel injector prototype for heavy-duty engines has been developed to use direct-injection natural gas with small amounts of entrained diesel as an ignition promoter. This “co-injection” is quite different from other dual-fuel engine systems, where diesel and gas are introduced separately. Reliable compression-ignition can be attained, but two injections per engine cycle are needed to minimize engine knock. In the present paper the interactions between diesel injection mass, combustion timing, engine load, and engine speed are investigated experimentally in a heavy-duty single-cylinder engine. For the tests with this injector, ignition delay ranged from 1.2–4.0 ms (of which injector delay accounts for ~0.9 ms). Shorter ignition delays occurred at higher diesel injection masses and advanced combustion timing. At ignition delays shorter than 2.0 ms, knock intensity decreased with increasing ignition delay.
Technical Paper

Auto-ignition of Transient Turbulent Gaseous Fuel Jets at High Pressure

2006-10-16
2006-01-3432
An experimental investigation of the autoignition of transient gaseous fuel jets in heated and compressed air is conducted in a shock tube facility. Experiments are performed at an initial pressure of 30 bar with initial oxidizer temperatures ranging from 1150 K to 1400 K, injection pressures ranging from 60 bar to 150 bar, and with injector tip orifice diameters of 0.275 mm and 1.1 mm. Under the operating conditions studied, increasing temperature results in a significant decrease in autoignition delay time, td. The smaller orifice results in an increase in ignition delay time and variability, as compared with the larger orifice. For initial temperatures below about 1250K, ignition is rarely achieved with the smaller orifice, whereas ignition is always achieved with the larger orifice down to 1150 K. Under the conditions studied, increasing the injection pressure decreases ignition delay, a result dynamically consistent with larger orifice size decreasing ignition delay time.
X