Refine Your Search

Topic

Author

Search Results

Technical Paper

Experimental Validation of Eco-Driving and Eco-Heating Strategies for Connected and Automated HEVs

2021-04-06
2021-01-0435
This paper presents experimental results that validate eco-driving and eco-heating strategies developed for connected and automated vehicles (CAVs). By exploiting vehicle-to-infrastructure (V2I) communications, traffic signal timing, and queue length estimations, optimized and smoothed speed profiles for the ego-vehicle are generated to reduce energy consumption. Next, the planned eco-trajectories are incorporated into a real-time predictive optimization framework that coordinates the cabin thermal load (in cold weather) with the speed preview, i.e., eco-heating. To enable eco-heating, the engine coolant (as the only heat source for cabin heating) and the cabin air are leveraged as two thermal energy storages. Our eco-heating strategy stores thermal energy in the engine coolant and cabin air while the vehicle is driving at high speeds, and releases the stored energy slowly during the vehicle stops for cabin heating without forcing the engine to idle to provide the heating source.
Technical Paper

An Analytical Energy-budget Model for Diesel Droplet Impingement on an Inclined Solid Wall

2020-04-14
2020-01-1158
The study of spray-wall interaction is of great importance to understand the dynamics that occur during fuel impingement onto the chamber wall or piston surfaces in internal combustion engines. It is found that the maximum spreading length of an impinged droplet can provide a quantitative estimation of heat transfer and energy transformation for spray-wall interaction. Furthermore, it influences the air-fuel mixing and hydrocarbon and particle emissions at combusting conditions. In this paper, an analytical model of a single diesel droplet impinging on the wall with different inclined angles (α) is developed in terms of βm (dimensionless maximum spreading length, the ratio of maximum spreading length to initial droplet diameter) to understand the detailed impinging dynamic process.
Technical Paper

Engine and Aftertreatment Co-Optimization of Connected HEVs via Multi-Range Vehicle Speed Planning and Prediction

2020-04-14
2020-01-0590
Connected vehicles (CVs) have situational awareness that can be exploited for control and optimization of the powertrain system. While extensive studies have been carried out for energy efficiency improvement of CVs via eco-driving and planning, the implication of such technologies on the thermal responses of CVs (including those of the engine and aftertreatment systems) has not been fully investigated. One of the key challenges in leveraging connectivity for optimization-based thermal management of CVs is the relatively slow thermal dynamics, which necessitate the use of a long prediction horizon to achieve the best performance. Long-term prediction of the CV speed, unlike the short-range prediction based on vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communications-based information, is difficult and error-prone.
Technical Paper

Optimization of Diesel Engine and After-treatment Systems for a Series Hybrid Forklift Application

2020-04-14
2020-01-0658
This paper investigates an optimal design of a diesel engine and after-treatment systems for a series hybrid electric forklift application. A holistic modeling approach is developed in GT-Suite® to establish a model-based hardware definition for a diesel engine and an after-treatment system to accurately predict engine performance and emissions. The used engine model is validated with the experimental data. The engine design parameters including compression ratio, boost level, air-fuel ratio (AFR), injection timing, and injection pressure are optimized at a single operating point for the series hybrid electric vehicle, together with the performance of the after-treatment components. The engine and after-treatment models are then coupled with a series hybrid electric powertrain to evaluate the performance of the forklift in the standard VDI 2198 drive cycle.
Technical Paper

Piston Bowl Geometry Effects on Combustion Development in a High-Speed Light-Duty Diesel Engine

2019-09-09
2019-24-0167
In this work we studied the effects of piston bowl design on combustion in a small-bore direct-injection diesel engine. Two bowl designs were compared: a conventional, omega-shaped bowl and a stepped-lip piston bowl. Experiments were carried out in the Sandia single-cylinder optical engine facility, with a medium-load, mild-boosted operating condition featuring a pilot+main injection strategy. CFD simulations were carried out with the FRESCO platform featuring full-geometric body-fitted mesh modeling of the engine and were validated against measured in-cylinder performance as well as soot natural luminosity images. Differences in combustion development were studied using the simulation results, and sensitivities to in-cylinder flow field (swirl ratio) and injection rate parameters were also analyzed.
Journal Article

Multi-Physics and CFD Analysis of an Enclosed Coaxial Carbon Nanotube Speaker for Automotive Exhaust Noise Cancellation

2019-06-05
2019-01-1569
Automotive exhaust noise is one of the major sources of noise pollution and it is controlled by passive control system (mufflers) and active control system (loudspeakers and active control algorithm). Mufflers are heavy, bulky and large in size while loudspeakers have a working temperature limitation. Carbon nanotube (CNT) speakers generate sound due to the thermoacoustic effect. CNT speakers are also lightweight, flexible, have acoustic and light transparency as well as high operating temperature. These properties make them ideal to overcome the limitations of the current exhaust noise control systems. An enclosed, coaxial CNT speaker is designed for exhaust noise cancellation application. The development of a 3D multi-physics (coupling of electrical, thermal and acoustical domains) model, for the coaxial speaker is discussed in this paper. The model is used to simulate the sound pressure level, input power versus ambient temperature and efficiency.
Technical Paper

Investigation of the Effects of Heat Transfer and Thermophysical Properties on Dynamics of Droplet-Wall Interaction

2019-04-02
2019-01-0296
Fuel spray-wall interaction frequently occurs on intake manifold wall in the port fuel injection engine and on the piston in the direct injection engine, especially during the cold start. The heat transfer between the spray and wall is involved in this interaction process and influences the dynamics of the impinged spray which can further affect the engine performance. The physics of impact dynamics of a single droplet serves as a fundamental for better comprehension of spray impingement. In our previous studies, we have focused on diesel droplets, at ambient temperature, impinging on both heated and non-heated wall and found impinged droplet morphology differences. To understand the effect of heat transfer and thermophysical properties on dynamics of droplet-wall interaction better, droplet temperature variation was introduced in this study. Therefore, different conditions were framed to explore the impact of thermophysical properties of the droplet.
Technical Paper

Numerical Parametric Study of a Six-Stroke Gasoline Compression Ignition (GCI) Engine Combustion

2019-04-02
2019-01-0207
Numerical investigation of engine performance and emissions of a six-stroke gasoline compression ignition (GCI) engine combustion at low load conditions is presented. In order to identify the effects of additional two strokes of the six-stroke engine cycle on the thermal and chemical conditions of charge mixtures, an in-house multi-dimensional CFD code coupled with high fidelity physical sub-models along with the Chemkin library was employed. The combustion and emissions were calculated using a reduced chemical kinetics mechanism for a 14-component gasoline surrogate fuel. Two power strokes per cycle were achieved using multiple injections during compression strokes. Parametric variations of injection strategy viz., individual injection timing for both the power strokes and the split ratio that enable the control of combustion phasing of both the power strokes were explored.
Technical Paper

Methodology to Perform Conjugate Heat Transfer Modeling for a Piston on a Sector Geometry for Direct-Injection Internal Combustion Engine Applications

2019-04-02
2019-01-0210
The increase in computational power in recent times has led to multidimensional computational fluid dynamics (CFD) modeling tools being used extensively for optimizing the diesel engine piston design. However, it is still common practice in engine CFD modeling to use constant uniform boundary temperatures. This is either due to the difficulty in experimentally measuring the component temperatures or the lack of measurements when simulation is being used predictively. This assumption introduces uncertainty in heat flux predictions. Conjugate heat transfer (CHT) modeling is an approach used to predict the component temperatures by simultaneously modeling the heat transfer in the fluid and the solid phase. However, CHT simulations are computationally expensive as they require more than one engine cycle to be simulated to converge to a steady cycle-averaged component temperature.
Journal Article

Investigation and Optimization of Cam Actuation of an Over-Expanded Atkinson Cycle Spark-Ignited Engine

2019-04-02
2019-01-0250
An over-expanded spark ignited engine was investigated in this work via engine simulation with a design constrained, mechanically actuated Atkinson cycle mechanism. A conventional 4-stroke spark-ignited turbo-charged engine with a compression ratio of 9.2 and peak brake mean effective pressure of 22 bar was selected for the baseline engine. With geometry and design constraints including bore, stroke, compression ratio, clearance volume at top dead center (TDC) firing, and packaging, one over-expanded engine mechanism with over expansion ratio (OER) of 1.5 was designed. Starting with a validated 1D engine simulation model which included calibration of the in-cylinder heat transfer model and SI turbulent combustion model, investigations of the Atkinson engine including cam optimization was studied. The engine simulation study included the effects of offset of piston TDC locations as well as different durations of the 4-strokes due to the mechanism design.
Journal Article

Aerodynamic Investigation of Cooling Drag of a Production Pickup Truck Part 1: Test Results

2018-04-03
2018-01-0740
The airflow that enters the front grille of a ground vehicle for the purpose of component cooling has a significant effect on aerodynamic drag. This drag component is commonly referred to as cooling drag, which denotes the difference in drag measured between open grille and closed grille conditions. When the front grille is closed, the airflow that would have entered the front grille is redirected around the body. This airflow is commonly referred to as cooling interference airflow. Consequently, cooling interference airflow can lead to differences in vehicle component drag; this component of cooling drag is known as cooling interference drag. One mechanism that has been commonly utilized to directly influence the cooling drag, by reducing the engine airflow, is active grille shutters (AGS). For certain driving conditions, the AGS system can restrict airflow from passing through the heat exchangers, which significantly reduces cooling drag.
Technical Paper

Development of a Simulation Tool for High Capacity Metal Foam Heat Exchanger with Phase Change Material

2018-04-03
2018-01-0783
Metal foam with their high porosity and heat storage capacity can be combined with phase change materials to be a powerful heat storage device. Numerical simulations of metal foam behavior can be challenging due to their complex geometric patterns necessitating high mesh requirements. Furthermore, simulations of the inner workings of a metal foam heat exchanger comprising of a large number of individual metal foam canisters can be impossible. The objective of the current work is to develop a computational model using a proprietary CFD tool Simerics-MP/Simerics-MP+® to simulate the workings of a metal foam heat exchanger with phase change element. A heat transfer coefficient capturing this heat transfer between wax and metal is used to formulate the “simplified” mixture model. The versatility of the proposed model is in the universality of its application to any shape or structure of metal foam. The computational model developed is tested to replicate the results of the 3D simulation.
Technical Paper

Accelerated Corrosion Testing of Automotive Evaporators and Condensers

2018-04-03
2018-01-0062
There is an ongoing effort in the industry to develop an accelerated corrosion test for automotive heat exchangers. This has become even more important as automakers are focusing on corrosion durability of 15 years in the field versus current target of 10 years. To this end an acid immersion test was developed and reported in a previous paper for condensers (1). This paper extends those results to evaporators and establishes the efficacy of the test using these results and those reported in the literature. The paper also discusses variability in corrosion test results as observed in tests such as ASTM G85:A3 Acidified Synthetic Sea Water Test (SWAAT), and its relation to field durability.
Journal Article

Calibration and Demonstration of Vehicle Powertrain Thermal Management Using Model Predictive Control

2017-03-28
2017-01-0130
Control of vehicle powertrain thermal management systems is becoming more challenging as the number of components is growing, and as a result, advanced control methods are being investigated. Model predictive control (MPC) is particularly interesting in this application because it provides a suitable framework to manage actuator and temperature constraints, and can potentially leverage preview information if available in the future. In previous SAE publications (2015-01-0336 and 2016-01-0215), a robust MPC control formulation was proposed, and both simulation and powertrain thermal lab test results were provided. In this work, we discuss the controller deployment in a vehicle; where controller validation is done through road driving and on a wind tunnel chassis dynamometer. This paper discusses challenges of linear MPC implementation related to nonlinearities in this over-actuated thermal system.
Journal Article

Electric Water Cooling Pump Sensitivity Based Adaptive Control

2017-03-28
2017-01-0602
With the trending electrification of vehicle accessory drives brings new control concepts useful in many cases to optimize energy management within the powertrain system. Considering that direct engine drives do not have as much flexibility as independent electric drives, it is apparent that several advantages are to be expected from electric drives. New developed high efficient electric drives can be implemented when considering many vehicle sub-systems. Combinations of continuous varying and discrete flow control devices offer thermal management opportunities across several vehicle attributes including fuel economy, drivability, performance, and cabin comfort. Often new technologies are integrated with legacy systems to deliver maximum value. Leveraging both electrical and mechanical actuators in some cases presents control challenges in optimizing energy management while delivering robust system operation.
Journal Article

HEV Battery Pack Thermal Management Design and Packaging Solutions

2017-03-28
2017-01-0622
Hybrid Electric Vehicles (HEV) utilize a High Voltage (HV) battery pack to improve fuel economy by maximizing the capture of vehicle kinetic energy for reuse. Consequently, these HV battery packs experience frequent and rapid charge-discharge cycles. The heat generated during these cycles must be managed effectively to maintain battery cell performance and cell life. The HV battery pack cooling system must keep the HV battery pack temperature below a design target value and maintain a uniform temperature across all of the cells in the HV battery pack. Herein, the authors discuss some of the design points of the air cooled HV battery packs in Ford Motor Company’s current model C-Max and Fusion HEVs. In these vehicles, the flow of battery cooling air was required to not only provide effective cooling of the battery cells, but to simultaneously cool a direct current high voltage to low voltage (DC-DC) converter module.
Technical Paper

Frequency Effects on High-Density Polyethylene Failure under Cyclic Loading

2017-03-28
2017-01-0332
High density polyethylene (HDPE) is widely used in automotive industry applications. When a specimen made of HDPE tested under cyclic loading, the inelastic deformation causes heat generated within the material, resulting in a temperature rise. The specimen temperature would stabilize if heat transfer from specimen surface can balance with the heat generated. Otherwise, the temperature will continue to rise, leading to a thermo assist failure. It is shown in this study that both frequencies and stress levels contribute to the temperature rise. Under service conditions, most of the automotive components experience low cyclic load frequency much less than 1 Hz. However, the frequency is usually set to a higher constant number for different stress levels in current standard fatigue life tests.
Technical Paper

Integration and Validation of a Thermal Energy Storage System for Electric Vehicle Cabin Heating

2017-03-28
2017-01-0183
It is widely recognized in the automotive industry that, in very cold climatic conditions, the driving range of an Electric Vehicle (EV) can be reduced by 50% or more. In an effort to minimize the EV range penalty, a novel thermal energy storage system has been designed to provide cabin heating in EVs and Plug-in Hybrid Electric Vehicles (PHEVs) by using an advanced phase change material (PCM). This system is known as the Electrical PCM-based Thermal Heating System (ePATHS) [1, 2]. When the EV is connected to the electric grid to charge its traction battery, the ePATHS system is also “charged” with thermal energy. The stored heat is subsequently deployed for cabin comfort heating during driving, for example during commuting to and from work. The ePATHS system, especially the PCM heat exchanger component, has gone through substantial redesign in order to meet functionality and commercialization requirements.
Technical Paper

A Research Study on a Curved Radiator Concept for Automotive Engine Cooling

2017-03-28
2017-01-0631
The need to increase the fuel-efficiency of modern vehicles while lowering the emission footprint is a continuous driver in automotive design. This has given rise to the use of engines with smaller displacements and higher power outputs. Compared to past engine designs, this combination generates greater amounts of excess heat which must be removed to ensure the durability of the engine. This has resulted in an increase in the number and size of the heat exchangers required to adequately cool the engine. Further, the use of smaller, more aerodynamic front-end designs has reduced the area available in the engine compartment to mount the heat exchangers. This is an issue, since the reduced engine compartment space is increasingly incapable of supporting an enlarged rectangular radiator system. Thus, this situation demands an innovative solution to aid the design of radiator systems such that the weight is reduced while maintaining the engine within acceptable operating temperatures.
Technical Paper

Air Charge and Residual Gas Fraction Estimation for a Spark-Ignition Engine Using In-Cylinder Pressure

2017-03-28
2017-01-0527
An accurate estimation of cycle-by-cycle in-cylinder mass and the composition of the cylinder charge is required for spark-ignition engine transient control strategies to obtain required torque, Air-Fuel-Ratio (AFR) and meet engine pollution regulations. Mass Air Flow (MAF) and Manifold Absolute Pressure (MAP) sensors have been utilized in different control strategies to achieve these targets; however, these sensors have response delay in transients. As an alternative to air flow metering, in-cylinder pressure sensors can be utilized to directly measure cylinder pressure, based on which, the amount of air charge can be estimated without the requirement to model the dynamics of the manifold.
X