Refine Your Search

Topic

Author

Search Results

Technical Paper

Facilitating Project-Based Learning Through Application of Established Pedagogical Methods in the SAE AutoDrive Challenge Student Design Competition

2024-04-09
2024-01-2075
The AutoDrive Challenge competition sponsored by General Motors and SAE gives undergraduate and graduate students an opportunity to get hands-on experience with autonomous vehicle technology and development as they work towards their degree. Michigan Technological University has participated in the AutoDrive Challenge since its inception in 2017 with students participating through MTU’s Robotic System Enterprise. The MathWorks Simulation Challenge has been a component of the competition since its second year, tasking students with the development of perception, control and testing algorithms using MathWorks software products. This paper presents the pedagogical approach graduate student mentors used to enable students to build their understanding of autonomous vehicle concepts using familiar tools. This approach gives undergraduate students a productive experience with these systems that they may not have encountered in coursework within their academic program.
Technical Paper

Energy Savings Impact of Eco-Driving Control Based on Powertrain Characteristics in Connected and Automated Vehicles: On-Track Demonstrations

2024-04-09
2024-01-2606
This research investigates the energy savings achieved through eco-driving controls in connected and automated vehicles (CAVs), with a specific focus on the influence of powertrain characteristics. Eco-driving strategies have emerged as a promising approach to enhance efficiency and reduce environmental impact in CAVs. However, uncertainty remains about how the optimal strategy developed for a specific CAV applies to CAVs with different powertrain technologies, particularly concerning energy aspects. To address this gap, on-track demonstrations were conducted using a Chrysler Pacifica CAV equipped with an internal combustion engine (ICE), advanced sensors, and vehicle-to-infrastructure (V2I) communication systems, compared with another CAV, a previously studied Chevrolet Bolt electric vehicle (EV) equipped with an electric motor and battery.
Technical Paper

Route-Optimized Energy Usage for a Plug-in Hybrid Electric Vehicle Using Mode Blending

2024-04-09
2024-01-2775
This paper presents a methodology to optimize the blending of charge-depleting (CD) and charge-sustaining (CS) modes in a multi-mode plug-in hybrid electric vehicle (PHEV). The objective of the optimization is to best utilize onboard energy for minimum overall energy consumption based on speed and elevation profile. The optimization reduces overall energy consumption when the selected route cannot be completely driven in all-electric mode. The optimization method splits drive cycles into constant distance segments and then uses a reduced-order model to sort the segments by the best use of battery energy vs. fuel energy. The PHEV used in this investigation is the Stellantis Pacifica. Results support energy savings up to 20% which depend on the route and initial battery State of Charge (SOC). Initial optimization takes 1 second for 38 km and 3 seconds for 154 km.
Technical Paper

Flexible Architecture for Testing Connected Vehicles in Realistic Traffic

2023-04-11
2023-01-0218
Connected vehicles have the potential to transform the way we commute and travel in a multitude of ways. Vehicles will cooperate and coordinate with each other to solve problems appropriate for the environment in which they are operating. In this paper, we focus on the development of test equipment that includes the infrastructure and vehicles to measure and record all of the information necessary to quantify the performance of cooperative driving algorithms in realistic scenarios. The system allows tests to include real vehicles on the track and virtual vehicles in a digital twin. Real and virtual vehicles interact through the road-side units and test facility network, allowing each test vehicle to receive messages from virtual vehicles as well as the infrastructure. Messages transmitted from the test vehicles are received in the digital twin, allowing the real vehicle to interact with virtual vehicles.
Technical Paper

Development of a Multiple Injection Strategy for Heated Gasoline Compression Ignition (HGCI)

2023-04-11
2023-01-0277
A multiple-injection combustion strategy has been developed for heated gasoline direct injection compression ignition (HGCI). Gasoline was injected into a 0.4L single cylinder engine at a fuel pressure of 300bar. Fuel temperature was increased from 25degC to a temperature of 280degC by means of electric injector heater. This approach has the potential of improving fuel efficiency, reducing harmful CO and UHC as well as particulate emissions, and reducing pressure rise rates. Moreover, the approach has the potential of reducing fuel system cost compared to high pressure (>500bar) gasoline direct injection fuel systems available in the market for GDI SI engines that are used to reduce particulate matter. In this study, a multiple injection strategy was developed using electric heating of the fuel prior to direct fuel injection at engine speed of 1500rpm and load of 12.3bar IMEP.
Technical Paper

Assessment of Fuel Consumption of a co-Optimized Gasoline Compression Ignition Engine in a Hybrid Electric Vehicle Platform

2023-04-11
2023-01-0467
Increasing regulatory demand to reduce CO2 emissions has led to an industry focus on electrified vehicles while limiting the development of conventional internal combustion engine (ICE) and hybrid powertrains. Hybrid electric vehicle (HEV) powertrains rely on conventional SI mode IC engines that are optimized for a narrow operating range. Advanced combustion strategies such as Gasoline Compression Ignition (GCI) have been demonstrated by several others including the authors to improve brake thermal efficiency compared to both gasoline SI and Diesel CI modes. Soot and NOx emissions are also reduced significantly by using gasoline instead of diesel in GCI engines due to differences in composition, fuel properties, and reactivity. In this work, an HEV system was proposed utilizing a multi-mode GCI based ICE combined with a HEV components (e-motor, battery, and invertor).
Technical Paper

Deliver Signal Phase and Timing (SPAT) for Energy Optimization of Vehicle Cohort Via Cloud-Computing and LTE Communications

2023-04-11
2023-01-0717
Predictive Signal Phase and Timing (SPAT) message set is one fundamental building block for vehicle-to-infrastructure (V2I) applications such as Eco-Approach and Departure (EAD) at traffic signal controlled urban intersections. Among the two complementary communication methods namely short-range sidelink (PC5) and long-range cellular radio link (Uu), this paper documents the work with long-range link: the complete data chain includes connecting to the traffic signals via existing backhaul communication network, collecting the raw signal phase state data, predicting the signal state changes and delivering the SPAT data via a geofenced service to requests over HTTP protocols. An Application Programming Interface (API) library is developed to support various cellular data transmission reduction and latency improvement techniques.
Technical Paper

A Comparative Study on Fatigue Damage of Caldie™ from Different Manufacturing Routes

2022-03-29
2022-01-0245
In automotive body manufacturing the dies for blanking/trimming/piercing are under most severe loading condition involving high contact stress at high impact loading and large number of cycles. With continuous increase in sheet metal strength, the trim die service life becomes a great concern for industries. In this study, competing trim die manufacturing routes were compared, including die raw materials produced by hot-working (wrought) vs. casting, edge-welding (as repaired condition) vs. bulk base metals (representing new tools), and the heat treatment method by induction hardening vs. furnace through-heating. CaldieTM, a Uddeholm trademarked grade was used as trim die material. The mechanical tests are performed using a WSU developed trimming simulator, with fatigue loading applied at cubic die specimen’s cutting edges through a tungsten carbide rod to accelerate the trim edge damage. The tests are periodically interrupted at specified cycles for measurement of die edge damage.
Technical Paper

Evaluation of Cylinder Pressure Transducer Performance Including the Influence of Mounting Location and Thermal Protection

2022-02-21
2022-01-5014
The piezoelectric cylinder pressure transducer is one of the most critical tools for internal combustion (IC) engine research and development. However, not all cylinder pressure transducers perform equally in every application, and the fidelity of transducers can vary across different models and manufacturers. Even slightly dissimilar models from the same manufacturer can have significantly different performance in areas such as sensitivity and resistance to intra-cycle thermal shock. These performance differences can lead to errors and inconsistencies in the calculation of combustion metrics like mean effective pressure (MEP), the polytropic compression and expansion exponents (PolyC and PolyE), and mass fraction burn (MFB) calculations. The variations can lead to suboptimal hardware and calibration choices during the engine development phase.
Technical Paper

Intelligent Auxiliary Battery Control - A Connected Approach

2021-09-21
2021-01-1248
As vehicles are getting electrified and more intelligent, the energy consumption of the auxiliary system increases rapidly. The auxiliary battery acts as the backbone of the system to support the proper operation of the vehicle. It is important to ensure the auxiliary battery has enough energy to meet the basic loads regardless the vehicle is in park or running. However, the existing methods only focus on auxiliary energy management when the vehicle is in a dynamic event. To fulfill the gap, we propose an intelligent strategy that detects the low state of charge (SOC) condition, temporarily turns down the auxiliary loads based on their priorities and charges the auxiliary battery at the maximum efficiency of the auxiliary power unit. In addition, the proposed strategy allows the vehicle to get the park duration update and make intelligent decisions on charging the auxiliary battery.
Technical Paper

Onboard Cybersecurity Diagnostic System for Connected Vehicles

2021-09-21
2021-01-1249
Today’s advanced vehicles have high degree of interaction due to numerous sensors, actuators and also with complex communication within the control units. In order to hack a vehicle, it has to be within a certain range of communication. Here, we discuss the On-Board Diagnostic (OBD) regulations for next generation BEV/HEV, its vulnerabilities and cybersecurity threats that come with hacking. We propose three cybersecurity attack detection and defense methods: Cyber-Attack detection algorithm, Time-Based CAN Intrusion Detection Method and, Feistel Cipher Block Method. These control methods autonomously diagnose a cybersecurity problem in a vehicle’s onboard system using an OBD interface, such as OBD-II when a fault caused by a cyberattack is detected, All of this is achieved in an internal communication network structure. The results discussed here focus on the first detection method that is Cyber-Attack detection algorithm.
Journal Article

Unstructured with a Point: Validation and Robustness Evaluation of Point-Cloud Based Path Planning

2021-04-06
2021-01-0251
Robust autonomous navigation in unstructured environments is an unsolved problem and critical to the operation of autonomous military and rescue ground vehicles. Two-dimensional path planners operating on occupancy grids or costs maps can produce infeasible paths when the operational area includes complex terrain. Recently, sample-based path planners that plan on LiDAR-acquired point-cloud maps have been proposed. These approaches require no discretization of the operational area and provide direct pose estimation by modeling vehicle and terrain interaction. In this paper, we show that direct sample-based path planning on point clouds is effective and robust in unstructured environments. Robustness is demonstrated by completing a system parameter sensitivity analysis of the system in an Unreal simulation environment and partnered with field validation.
Technical Paper

Engine On/Off Optimization for an xHEV during Charge Sustaining Operation on Real World Driving Routes Using Connectivity Data

2021-04-06
2021-01-0433
This paper presents a methodology that optimizes the periods of engine operation on a selected route for a Plug-in Hybrid Electric Vehicle (PHEV) or Hybrid Electric Vehicle (HEV) using Connected Vehicle data to minimize energy consumption. The study was conducted using a Reduced-Order Powertrain model of second-generation Chevrolet Volt. The method utilizes the Backward Induction Dynamic Programming algorithm to come up with an optimal control mode matrix of engine operation along the selected route for various battery states of charge. The objective of this method is to make use of Vehicle Connectivity to minimize the energy utilization of an HEV by using the speed and elevation profile of a selected route transmitted to the vehicle via V2X communication systems.
Technical Paper

A Data-Driven Approach to Determine the Single Droplet Post-Impingement Pattern on a Dry Wall Using Statistical Machine Learning Classification Methods

2021-04-06
2021-01-0552
The study of spray-wall interaction is of great importance to understand the dynamics during fuel-surface impingement process in modern internal combustion engines. The identification of droplet post-impingement pattern (contact, transition, non-contact) and droplet characteristics can quantitatively provide an estimation of energy transfer for spray-wall interaction, thus further influencing air-fuel mixing and emissions under combusting conditions. Theoretical criteria of single droplet post-impingement pattern on a dry wall have been experimentally and numerically studied by many researchers to quantify the hydrodynamic droplet behaviors. However, apart from model fidelity, another issue is the scalability. A theoretical criterion developed from one case might not be well suited to another scenario. In this paper, a data-driven approach for single droplet-dry wall post-impingement pattern utilizing arithmetical machine learning classification methods is proposed and demonstrated.
Technical Paper

Studies on Simulation and Real Time Implementation of LQG Controller for Autonomous Navigation

2021-04-06
2021-01-0108
The advancement in embedded systems and positional accuracy with base station GPS modules created opportunity to develop high performance autonomous ground vehicles. However, the development of vehicle model and making accurate state estimations play vital role in reducing the cross track error. The present research focus on developing Linear Quadratic Gaussian (LQG) with Kalman estimator for autonomous ground vehicle to track various routes, that are made with the series of waypoints. The model developed in the LQG controller is a kinematic bicycle model, which mimics 1/5th scale truck. Further, the cubic spline fit has been used to connect the waypoints and generate the continuous desired/target path. The testing and implementation has been done at APS labs, MTU on the mentioned vehicle to study the performance of controller. Python has been used for simulations, controller coding and interfacing the sensors with controller.
Technical Paper

Aging Simulation of Electric Vehicle Battery Cell Using Experimental Data

2021-04-06
2021-01-0763
The adoption of lithium-ion batteries in vehicle electrification is fast growing due to high power and energy demand on hybrid and electric vehicles. However, the battery overall performance changes with time through the vehicle life. This paper investigates the electric vehicle battery cell aging under different usages. Battery cell experimental data including open circuit voltage and internal resistance is utilized to build a typical electric vehicle model in the AVL-Cruise platform. Four driving cycles (WLTP, UDDS, HWFET, and US06) with different ambient temperatures are simulated to acquire the battery cell terminal currents. These battery cell terminal current data are inputs to the MATLAB/Simulink battery aging model. Simulation results show that battery degrades quickly in high ambient temperatures. After 15,000 hours usage in 50 degrees Celsius ambient temperature, the usable cell capacity is reduced up to 25%.
Journal Article

Supervised Terrain Classification with Adaptive Unsupervised Terrain Assessment

2021-04-06
2021-01-0250
Off road navigation demands ground robots to traverse complex and often changing terrain. Classification and assessment of terrain can improve path planning strategies by reducing travel time and energy consumption. In this paper we introduce a terrain classification and assessment framework that relies on both exteroceptive and proprioceptive sensor modalities. The robot captures an image of the terrain it is about to traverse and records corresponding vibration data during traversal. These images are manually labelled and used to train a support vector machine (SVM) in an offline training phase. Images have been captured under different lighting conditions and across multiple locations to achieve diversity and robustness to the model. Acceleration data is used to calculate statistical features that capture the roughness of the terrain whereas angular velocities are used to calculate roll and pitch angles experienced by the robot.
Technical Paper

A Data-Based Modeling Approach for the Prediction of Front Impact (NCAP) Safety Performance of a Passenger Vehicle

2021-04-06
2021-01-0923
Designing a vehicle for superior crash safety performance in consumer rating tests such as US-NCAP is a compelling target in the design of passenger vehicles. In today’s context, there is also a high emphasis on making a vehicle as lightweight as possible which calls for an efficient design. In modern vehicle design, these objectives can only be achieved through Computer-Aided Engineering (CAE) for which a detailed CAD (Computer-Aided Design) model of a vehicle is a pre-requisite. In the absence of the latter (i.e. a matured CAD model) at the initial and perhaps the most crucial phase of vehicle body design, a rational approach to design would be to resort to a knowledge-based methodology which can enable crash safety assessment of an assumed design using artificial intelligence techniques such as neural networks.
Technical Paper

Chassis Lightweight Hole Placement with Weldline Evaluation

2021-01-07
2020-01-5217
Vehicle weight-driven design comes amid rising higher fuel efficiency standards and must meet the criteria—pass proving ground (PG) test events that are equivalent to customer usage. Computer-aided engineering (CAE) fatigue analysis for PG is a successful push behind to digitally simulate vehicle durability performance with high fidelity. The need for vehicle weight reduction often arises in the vehicle development final phases when CAE methods, time, and tangible cost-effective opportunities are limited or nonexistent. In this research, a new CAE methodology is developed to identify opportunities for lightweight hole placement in the chassis structure and deliver a cost-effective lightweight solution with no additional impact on fatigue life. The successful application of this new methodology exhibits the effectiveness of the truck frame, which is the key chassis structure to support the body, suspension, and powertrain.
Technical Paper

Lithium-Ion Battery Cell Modeling with Experiments for Battery Pack Design

2020-04-14
2020-01-1185
Lithium-ion polymer battery has been widely used for vehicle onboard electric energy storage ranging from 12V SLI (Starting, Lighting, and Ignition), 48V mild hybrid electric, to 300V battery electric vehicle. Formulation on cell parameters acquired from minimum numbers of experiments, the modeling and simulation could be an effective approach in predicting battery performance, thermal effectiveness, and degradation. This paper describes the modeling, simulation, and validation of Lithium-Nickel-Manganese-Cobalt-Oxide (LiNiMnCoO2) based cell with 3.6V nominal voltage and 20Ah capacity. Constant current 20A, 40A, 60A, and 80A discharge tests are conducted in the computer-controlled cycler and temperature chamber. Discharging voltage curves and cell surface temperature distributions are recorded in each discharging test. A three-dimensional cell model is constructed in the COMSOL multi-physics platform based on the cell parameters.
X