Refine Your Search

Topic

Author

Search Results

Technical Paper

Gradationally Controlled Voltage Inverter for More Electric Aircrafts

2019-09-16
2019-01-1913
The more electric aircraft (MEA) concept has been attracting attention over recent decades to reduce emissions and fuel consumption. In MEAs, many subsystems that previously used hydraulic or pneumatic power have been replaced by electrical systems, and hence the weight of inverters has significant importance. The weight of inverters is largely attributed to passive filters that reduce the derivative of output voltages dv/dt and electromagnetic interference noises caused by common-mode voltages. To reduce the size of passive filters, multilevel inverters with 5 or more voltage steps are preferred. However, classic multilevel inverters have some challenges to achieve these step numbers without using plural dc power supplies that require massive transformers. In this work, a gradationally controlled voltage (GCV) inverter is proposed for MEAs.
Technical Paper

Study of Discharge under Swirl Flow and Combustion Conditions

2018-10-30
2018-32-0006
Combustion at a high EGR (Exhaust Gas Recirculation) ratio is an effective means for improving the fuel efficiency of a gasoline engine. However, there is a problem that the combustion speed decreases. So, it is necessary to intensify the in-cylinder flow to ensure the combustion speed. The spark discharge generated by the ignition coil is strongly influenced by the in-cylinder flow. It forms an arcuate discharge path along the flow, and may blow off and re-discharge under a strong gas flow. The behavior of spark discharge strongly affects the ignition, and consequently affects the stability of combustion. However, the phenomena in a combustion chamber are very complicated because of various environmental conditions, and the discharge and combustion phenomena under a strong gas flow remain unclear. In this research, in order to study these phenomena, discharge and combustion experiments under flow using a constant volume container were performed.
Technical Paper

Development of Autonomous Driving System Using GNSS and High Definition Map

2018-04-03
2018-01-0036
Recently, development of vehicle control system targeting Full Driving Automation (autonomous driving level 5) has advanced. Some applications of autonomous driving systems like the Lane Keeping Assist system (LKA) and Auto Lane Change system (ALC) (autonomous driving level 1-3) have been put on the market. However, the conventional system using information from front camera, it is difficult to operate in some situations. For example the road that no line, large curvature and number of lane increases or decreases. We propose an autonomous driving system using high accuracy vehicle position estimation technology and a high definition map. An LKA system calculates the target steering wheel angle based on both vehicle position information from the Global Navigation Satellite System (GNSS) and the target lane of high the definition map, according to the method of front gaze driver model. Then, the system controls steering the wheel angle by Electric Power Steering (EPS).
Technical Paper

Development of High Speed Motor and Inverter for Electric Supercharger

2013-04-08
2013-01-0931
In recent years, the fuel consumption improvement of automobiles is indispensable due to the global move to reduce CO₂ emissions. Downsizing of engines by turbocharger obtains the output equal to a large engine, and improves the fuel consumption. However, turbocharger has the response delay called turbo lag. In order to improve a transient response, we developed a high-speed motor. The electric supercharger consists of high-speed motor and compressor, and drives compressor by high-speed motor instead of an exhaust gas turbine. By combining conventional turbocharger and electric supercharger, we developed two-stage turbocharger system. In this paper, we explained development of high-speed motor and inverter. And, as application example, we explained electric two-stage turbocharger system. The high-speed motor and inverter are connected without harness, and assembled in one single unit. The motor is driven at high efficiency by vector control.
Technical Paper

Interior Noise evaluation of Electric Vehicle: Noise source contribution analysis

2011-05-17
2011-39-7229
Global environment protection, Co2 emission reduction and so on, is an important problem in automotive industry. An Electric Vehicle (EV) production is one of policies. Co2 emission of EV is lower than Internal Combustion Engine (ICE), petrol and diesel engine. On the other hand, customer's needs for the comfort on driving increase year after year. So it's an important factor for new car performance. Generally speaking, it's thought that the noise and vibration performance of EV have the better of ICE performance. However the aerodynamic noise and road noise contribution for interior noise in EV rise in comparison with ICE, and moreover the sound quality change by new noise component of the motor noise. Therefore new sound evaluation method is needed for EV. So this paper demonstrates each noise component contribution in EV by new noise separation technology, and show the comparison result with EV and ICE.
Technical Paper

Study on Practicality of Electric Vehicle “i-MiEV” under Severe Weather

2011-05-17
2011-39-7241
Mitsubishi Motors Corporation succeeded in mass production of the electric vehicle “i-MiEV” which features leading-edge technologies epitomized by lithium-ion battery. The EV was released into the Japanese market in July 2009 and the European market in January 2011. In order to be used all over the world, the EV has to be practical and durable even under severe weather of extremely cold or extremely hot regions. In this paper we report some results of the tests conducted under extremely cold weather as well as extremely hot weather. From the test results the validity of the vehicle control system and the practicality of the EV are verified.
Technical Paper

Prediction of Air Cooling System for EV/HEV Battery Pack*

2011-05-17
2011-39-7269
An efficient cooling system will ensure the reliability of the EV/HEV (Electric Vehicle/Hybrid Electric Vehicle) battery system and extend their lifetime. In order to shorten design period or increase design iterations, a high-speed and high-precision prediction method for cooling is indispensable. For models, such as Mitsubishi i-MiEV, which use fresh air to cool batteries in the battery pack, a transient approach based on loosely coupled method is developed to predict temperature change of batteries. The results by our new approach are in good agreement with the experimental data. Moreover, for the EV/HEV using circulated air to cool its batteries, a second approach is also developed, which can predict the temperature variations of both EV/HEV batteries in the battery pack and the cooling air.
Journal Article

Keys to Understanding Spray-guided Combustion of a Narrow-spacing Gasoline Direct Injection SI Engine with a Centrally Mounted Multi-hole Injector

2009-04-20
2009-01-1497
Spray-guided gasoline direct injection SI engines attract as one of new generation lean-burn engines to promise CO2 reduction. These typically adopt “narrow-spacing” concept in which an injector is centrally mounted close to a spark plug. Therefore, geometric targets of the fuel spray and a position of the spark plug have to be exactly limited to maintain a proper mixture in the spark gap. In addition, the stable combustion window is narrow because the spark ignition is limited in a short time during and immediately after the injection. These spatial and temporal restrictions involve some intractable problems concerning the combustion robustness due to the complicate phenomena around the spark plug. The local mixture preparation near the spark plug significantly depends on the spray-induced charge motion. The intense flow induced by the motion blows out and stretches the spark, thereby affecting the spark discharge performance.
Technical Paper

An Online Estimation Method of Stability Factor of a Vehicle for Steering

2009-04-20
2009-01-0045
In this paper, we suggest a novel algorithm to distinguish semi-steady states from various steering patterns and to estimate the stability factor. The algorithm also estimates each stability factor in left and right turns because there could be a case where they differ based on uneven tire wear and so on. The stability factor, which is the turning characteristic of a vehicle, has been treated as constant for most vehicle control systems. However, in fact, it may change in some situations, for example when a vehicle is overloaded. So there is a chance that a driver may be aware of an unusual sensation when vehicle control is designed based on a constant stability factor. We have succeeded in developing an algorithm to estimate the stability factor accurately enough to be able to compensate for it and have confirmed the effectiveness of the algorithm by simulation and vehicle testing as well.
Technical Paper

Simplified Modeling of a Lean NOx Trap Catalyst for an Engine Control System

2005-04-11
2005-01-1115
The lean NOx trap catalyst is a flow through device used in the aftertreatment of lean-burn engine exhaust gas. A simple model capable of simulating catalyst performance would be extremely useful in the development of a viable control system for switching back and forth between lean and rich operation in order to use a lean NOx trap catalyst. Such a model would have to be simple and yield calculated results quickly if it is to serve the ultimate objective of implementing a practical engine control unit for lean-burn engines. The model developed in this work adopts a datamap search approach featuring a simple NOx storage reaction mechanism. More specifically, the model accurately simulates NOx that is not adsorbed under lean conditions (NOx leak) and NOx that is not purified under rich conditions (NOx slip). By projecting the impact of ageing on catalyst performance, the model can also estimate diminished NOx emission capacity and fuel economy.
Technical Paper

A Vehicle State Detection Method Based on Estimated Aligning Torque Using EPS

2005-04-11
2005-01-1265
This paper proposes a vehicle state detection method for improving the stability of vehicles equipped with electric power steering (EPS) and electronic stability control (ESC) systems. ESC is an effective vehicle stability control system that operates within a vehicle's stability limitations. Generally ESC uses a vehicle state signal such as yaw rate. To enhance the ESC function so that it can alleviate understeer, a process that is capable of detecting understeer is required. This concept motivated us to develop a vehicle state detection algorithm based on estimated self-aligning torque using EPS. It is well known that maximum self-aligning torque occurs before maximum cornering force is reached. We have confirmed that the proposed algorithm can detect understeer earlier than conventional means based on vehicle yaw rate.
Technical Paper

Fuel Breakup Near Nozzle Exit of High-Pressure Swirl Injector for Gasoline Direct Injection Engine

2004-03-08
2004-01-0542
Experimental investigations of fuel breakup very close to nozzle of practical high-pressure swirl injector, which is used in gasoline direct injection (GDI) engine, were carried out. In GDI engines, fuel is directly injected into cylinder therefore the spray characteristics and mixture formation are of primary importance. In this research, visualizations of primary spray formation process were demonstrated using a high-speed video camera (maximum speed: 1Mfps) with a long-distance microscope. Initial state and development of the spray were discussed under the different injection pressure condition. During the injection period, the length and thickness of the liquid sheet, which is produced from the nozzle exit, were measured using Ar-ion laser sheet and high-speed camera. Primary spray structure and behavior of liquid sheet, especially surface wave of liquid sheet, at nozzle exit were discussed using obtained images.
Technical Paper

A New Electric Current Control Strategy for EPS Motors

2001-03-05
2001-01-0484
This paper presents a new motor current control strategy for Electric Power Steering (EPS) to reduce current fluctuation. Such current fluctuation may cause undesirable steering torque ripple and acoustic noise, if an inexpensive microprocessor is used. Using a DC-motor, current fluctuation associated with change in the battery voltage, etc., may occur. We have developed a new current control strategy which effectively alleviates current fluctuations of the motor without using higher performance microprocessors. The new controller is based on the estimation of disturbance voltage and compensation for this disturbance voltage. We have bench-tested the performance of this control strategy and confirmed that current fluctuation is reduced below that using conventional PI controller. The PI gain for the proposed controller is the same as that for the conventional controller.
Technical Paper

Prediction of Occupant's Thermal Sensation under the Transient Environment in a Vehicle Compartment

2001-03-05
2001-01-0586
New numerical simulation system and experimental evaluation system has been developed to predict and evaluate occupant's thermal sensation in a passenger compartment in which environment is not steady and not uniform. Transitional effective temperature, which is new index of thermal sensation, is proposed and verified to correspond with subjects' thermal sensation votes. The simulation system has two advantage beside the prediction of thermal sensation; automatic generation of a computational model and coupling analysis of temperature including an analysis of temperature distribution inside a cabin, refrigerating cycle, solar radiation, and so on. It was verified that this system well predicts occupant's thermal sensation in a short time.
Technical Paper

Idling Stop System Coupled with Quick Start Features of Gasoline Direct Injection

2001-03-05
2001-01-0545
The gasoline direct injection engine starts significantly faster than a conventional engine. Fuel can be injected into the cylinder during the compression stroke at the same time of cranking start. When the spark plug ignites the mixture at the end of compression stroke, the engine has its first combustion, that is, the first combustion occurs within 0.2 sec after the start of cranking. This unique characteristic of quick startability has realized a idle stop system, which enables drivers to operate the vehicle in a natural manner.
Technical Paper

Mixing Control and Combustion in Gasoline Direct Injection Engines for Reducing Cold-Start Emissions

2001-03-05
2001-01-0550
A two-stage combustion is one of the Mitsubishi GDI™ technologies for a quick catalyst warm-up on a cold-start. However, when the combustion is continued for a long time, an increase in the fuel consumption is a considerable problem. To solve the problem, a stratified slight-lean combustion is newly introduced for utilization of catalysis. The stratified mixture with slightly lean overall air-fuel ratio is prepared by the late stage injection during the compression stroke. By optimizing an interval between the injection and the spark timing, the combustion simultaneously supplies substantial CO and surplus O2 to a catalyst while avoiding the soot generation and the fouling of a spark plug. The CO oxidation on the catalyst is utilized to reduce the cold-start emissions. Immediately after the cold-start, the catalyst is preheated for the minimum time to start the CO oxidation by using the two-stage combustion. Following that, the stratified slight-lean combustion is performed.
Technical Paper

Development of Advanced Emission-Control Technologies for Gasoline Direct-Injection Engines

2001-03-05
2001-01-0254
An extensive effort has been made, at Mitsubishi Motors, in the technology field of new catalysts and of the catalyst reaction control for the purpose of further improvement of the emission control with the GDI engines [1-2]. A new NOx-trap catalyst has been developed to satisfy the required higher catalyst performance under high-temperature condition. The new catalyst contains potassium (K) of excellent NOx-storage capacity under high-temperature region in the catalytic atmosphere, and to retain K stability zeolite is mixed in the catalyst layer as well as the substrate is coated with silica (SiO2). This new catalyst has been proven of the improved NOx conversion efficiency, and solved the long-pending problems particularly those experienced under high-temperature operation.
Technical Paper

Development of the NOx Adsorber Catalyst for Use with High-Temperature Condition

2001-03-05
2001-01-1298
NOx adsorber has already been used for the after-treatment system of series production vehicle installed with a lean burn or direct injection engine [1,2,3]. In order to improve NOx adsorbability at high temperatures, many researchers have recently been trying an addition of potassium (K) as well as other conventional NOx adsorbents. Potassium, however, reacts easily with the cordierite honeycomb substrate at high temperatures, and not only causes a loss in NOx adsorbability but also damages the substrate. Three new technologies have been proposed in consideration of the above circumstances. First, a new concept of K-capture is applied in washcoat design, mixed with zeolite, to improve thermal stability of K and to keep high NOx conversion efficiency, under high temperatures, of NOx adsorber catalyst. Second, another new technology, pre-coating silica over the boundary of a substrate and washcoat, is proposed to prevent the reaction between potassium and cordierite.
Technical Paper

New Quiescent Combustion System for Heavy–Duty Diesel Engines to Overcome Exhaust Emissions and Fuel Consumption Trade–Off

2000-06-19
2000-01-1811
In the next few years, the USA, EU, and Japan plan to introduce very stringent exhaust emissions regulations for heavy–duty diesel engines, in order to enhance the protection air quality. This builds upon the heavy–duty diesel engine exhaust emissions regulations already in effect. At the same time, improvement in fuel consumption of heavy–duty diesel engines will be very important for lowering vehicle operating costs, conserving fossil fuel resources, and reduction of CO2 (greenhouse gas) levels. This paper presents a detailed review of a quiescent combustion system for a heavy–duty diesel engine, which offers breakthrough performance in terms of the exhaust emissions – fuel consumption trade–off, compared with the more conventional swirl supported combustion system. This conclusion is supported by experimental results comparing quiescent and swirl supported versions of various combustion system configurations.
Technical Paper

Development of High Performance Heavy-Duty Diesel Engine Oil to Extend Oil Drain Intervals: 5W30 Fully Synthetic Oil Containing MoDTC

2000-06-19
2000-01-1992
In this study, the oxidation stability, soot dispersancy, antiwear performance, and friction-reducing capability of friction modifiers (FMs) were evaluated, and an SAE 5W-30 fully synthetic oil with MoDTC type FMs was developed for heavy-duty diesel engines. In several engine tests, it was confirmed that the developed oil can double the oil drain interval in comparison with API CD SAE 30, even when EGR is applied, and improves the fuel efficiency.
X