Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

An Experimental Study on Relationship between Lubricating Oil Consumption and Cylinder Bore Deformation in Conventional Gasoline Engine

2009-04-20
2009-01-0195
It is well known that lubricating oil consumption (LOC) is much affected by the cylinder bore deformation occurring within internal combustion engines. There are few analytical reports, however, of this relationship within internal combustion engines in operation. This study was aimed at clarifying the relationship between cylinder bore deformation and LOC, using a conventional in-line four-cylinder gasoline engine. The rotary piston method developed by the author et al. was used to measure the cylinder bore deformation of the engine’s cylinder #3 and cylinder #4. In addition, the sulfur tracer method was applied to measure LOC of each cylinder. LOC was also measured by changing ring tension with a view to taking up for discussion how piston ring conforms to cylinder, and how such conformability affects LOC. Their measured results were such that the cylinder bore deformation was small in the low engine load area and large in the high engine load area.
Technical Paper

Part 2: The Effects of Lubricating Oil Film Thickness Distribution on Gasoline Engine Piston Friction

2007-04-16
2007-01-1247
Due to increasing economic and environmental performance requirements of internal combustion engines, piston manufacturers now focus more on lower friction designs. One factor strongly influencing the friction behavior of pistons is the dynamic interaction between lubricating oil, cylinder bore and piston. Therefore, the dynamic effect of the oil film in the gap between the liner and piston has been studied, using a single cylinder engine equipped with a sapphire window. This single cylinder engine was also equipped with a floating liner, enabling real-time friction measurement, and directly linking the oil film behavior to friction performance of pistons.
Technical Paper

Development of a Technique to Predict Oil Consumption with Consideration for Cylinder Deformation - Prediction of Ring Oil Film Thickness and Amount of Oil Passing Across Running Surface under Cylinder Deformation -

2003-03-03
2003-01-0982
Although various factors affecting oil consumption of an internal combustion engine can be considered, a technique to predict the amount of oil consumed within a cylinder that passes across a running surface of a ring was developed in this study. In order to predict the effect of cylinder deformation on oil consumption, a simple and easy technique to calculate the oil film thickness in deformed cylinder was proposed. For this technique, the piston ring was assumed to be a straight beam, and the beam bends with ring tension, gas pressure, and oil film pressure. From the calculated oil film thickness, amount of oil passing across the running surface of the TOP ring and into the combustion chamber was calculated. The calculated results were then compared to the oil film thickness of the ring and oil consumption measured during engine operation, and their validity was confirmed.
Technical Paper

A Study of Abnormal Wear in Power Cylinder of Diesel Engine with EGR - Wear Mechanism of Soot Contaminated in Lubricating Oil

2000-03-06
2000-01-0925
Exhaust-gas recirculation (EGR) causes the piston ring and cylinder liners of a diesel engine to suffer abnormal wear. The present study aimed at making clear the mechanism of wear which is induced by soot in the EGR gas. The piston ring has been chrome plated and the cylinder was made of boron steadite cast iron. Detailed observations of the ring sliding surfaces and that of the wear debris contained in lubricating oil were carried out. As a result, it was found that the wear of the top ring sliding surfaces identify abrasive wear without respect to the presence of EGR by steadite on the cylinder liner sliding surface. In addition, it is confirmed in a cutting test that soot mixed lubricating oil improved in performance as cutting oil. Based on these results, we proposed the hypothesis in the present study that ring wear is accelerated at EGR because abrasive wear increases due to a lot of soot mixed into lubricating oil improving the performance of lubricating oil as cutting oil.
Technical Paper

Variation of Piston Friction Force and Ring Lubricating Condition in a Diesel Engine with EGR

1998-10-19
982660
Exhaust-gas recirculation (EGR) causes the piston rings and cylinder liners of a Diesel engine to suffer abnormal wear on the sliding parts. The present study aimed at making clear such abnormal wear structurally by examining the state of lubrication of the piston with a floating liner method, observing directly a visualized cylinder and experimenting on a Diesel engine for wear. As a result, it was confirmed that soot in EGR gas would change a lot the characteristics of the piston friction force. There are two mechanisms: one directly enters the sliding surfaces, and the other enters the ring rear, applying more load to them. It was also confirmed that the level of wear on the piston ring would vary to a large extent as the state of lubrication changed.
Technical Paper

Variation of Piston Ring Oil Film Thickness in an Internal Combustion Engine - Comparison Between Thrust and Anti-Thrust Sides

1998-02-23
980563
This paper describes a measurement method using laser induced fluorescence we have developed for simple simultaneous measurements of piston ring oil film thickness at plural points for internal combustion engines. The findings obtained by the measurements of oil film thickness on both thrust and anti-thrust sides of the piston for a mono-cylinder compact diesel engine using this new measurement method are also discussed in this paper. One of main findings is that the oil film thickness of each ring on both sides differs markedly in terms of the absolute value and the stroke- to-stroke variation. It is found that this difference in oil film thickness is caused by the difference in the amount of lubricating oil supplied to the oil ring, and the effect is greater than that of engine speed or load.
Technical Paper

Friction and Lubrication Characteristics of Piston Pin Boss Bearings of an Automotive Engine

1997-02-24
970840
The aim of this research was to analyze the lubrication conditions of piston pin boss bearings used in the press-fit piston pins of automobile gasoline engines. An original pin boss friction measuring device was developed and used to successfully obtain measurements. It was revealed that the friction force peaks twice every cycle at high engine loads, and non-fluid lubrication characteristics are displayed. The friction forces for various differing piston pins and pin boss bearings were analyzed, and it was shown that reducing piston pin length or thickness to reduce piston weight, or reducing the pin boss bearing clearance to reduce noise worsen the friction characteristics and increase the possibility of abnormal bearing friction as well as seizure.
X