Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

Lunar Base Life Support Failure Analysis and Simulation

2009-07-12
2009-01-2482
Dynamic simulation of the lunar outpost habitat life support was undertaken to investigate the impact of life support failures and to investigate possible responses. Some preparatory static analysis for the Lunar Outpost life support model, an earlier version of the model, and an investigation into the impact of Extravehicular Activity (EVA) were reported previously. (Jones, 2008-01-2184, 2008-01-2017) The earlier model was modified to include possible resupply delays, power failures, recycling system failures, and atmosphere and other material storage failures. Most failures impact the lunar outpost water balance and can be mitigated by reducing water usage. Food solids and nitrogen can be obtained only by resupply from Earth. The most time urgent failure is a loss of carbon dioxide removal capability. Life support failures might be survivable if effective operational solutions are provided in the system design.
Technical Paper

A Pilot Scale System for Low Temperature Solid Waste Oxidation and Recovery of Water

2009-07-12
2009-01-2365
In February 2004 NASA released “The Vision for Space Exploration.” The goals outlined in this document include extending the human presence in the solar system, culminating in the exploration of Mars. A key requirement for this effort is to identify a safe and effective method to process waste. Methods currently under consideration include incineration, microbial oxidation, pyrolysis, drying, and compaction. Although each has advantages, no single method has yet been developed that is safe, recovers valuable resources including oxygen and water, and has low energy and space requirements. Thus, the objective of this work was to develop a low temperature oxidation process to convert waste cleanly and rapidly to carbon dioxide and water. TDA and NASA Ames Research Center have developed a pilot scale low temperature ozone oxidation system to convert organic waste to CO2 and H2O.
Technical Paper

Planning Dynamic Simulation of Space Life Support

2009-07-12
2009-01-2493
Dynamic modeling and simulation of recycling space life support is necessary to determine processing rates, buffer sizes, controls, and other aspects of systems design. A common approach is to develop an overall inclusive model that reflects nominal system operation. A full dynamic simulation of space life support represents many system elements in an inclusive model, but it cannot and should not include everything possible. A model is a simplified, partial, mathematical representation of reality. Including unnecessary elements makes the model complex, costly, and confusing. Models are built to help understand a system and to make predictions and decisions about it. The best and most useful models are developed to answer specific important questions. There are many possible questions about life support design and performance. Different questions are best answered by different models. Static spreadsheet analysis is a good starting point.
Technical Paper

Advanced Development of the Direct Osmotic Concentration System

2008-06-29
2008-01-2145
Direct osmotic concentration (DOC) is an integrated membrane treatment process designed for the reclamation of spacecraft wastewater. The system includes forward osmosis (FO), membrane evaporation, reverse osmosis (RO) and an aqueous phase catalytic oxidation (APCO) post-treatment unit. This document describes progress in the third year of a four year project to advance hardware maturity of this technology to a level appropriate for human rated testing. The current status of construction and testing of the final deliverable is covered and preliminary calculations of equivalent system mass are funished.
Technical Paper

Evaluation of Commercial Off-the-Shelf Ammonia Sorbents and Carbon Monoxide Oxidation Catalysts

2008-06-29
2008-01-2097
Designers of future space vehicles envision simplifying the Atmosphere Revitalization (AR) system by combining the functions of trace contaminant (TC) control and carbon dioxide removal into one swing-bed system. Flow rates and bed sizes of the TC and CO2 systems have historically been very different. There is uncertainty about the ability of trace contaminant sorbents to adsorb adequately in a high-flow or short bed length configurations, and to desorb adequately during short vacuum exposures. This paper describes preliminary results of a comparative experimental investigation into adsorbents for trace contaminant control. Ammonia sorbents and low temperature catalysts for CO oxidation are the foci. The data will be useful to designers of AR systems for Constellation. Plans for extended and repeated vacuum exposure of ammonia sorbents are also presented.
Journal Article

Waste Management Technology and the Drivers for Space Missions

2008-06-29
2008-01-2047
Since the mid 1980s, NASA has developed advanced waste management technologies that collect and process waste. These technologies include incineration, hydrothermal oxidation, pyrolysis, electrochemical oxidation, activated carbon production, brine dewatering, slurry bioreactor oxidation, composting, NOx control, compaction, and waste collection. Some of these technologies recover resources such as water, oxygen, nitrogen, carbon dioxide, carbon, fuels, and nutrients. Other technologies such as the Waste Collection System (WCS - the commode) collect waste for storage or processing. The need for waste processing varies greatly depending upon the mission scenario. This paper reviews the waste management technology development activities conducted by NASA since the mid 1980s and explores the drivers that determine the application of these technologies to future missions.
Journal Article

Development and Design of a Low Temperature Solid Waste Oxidation and Water Recovery System

2008-06-29
2008-01-2052
In February 2004 NASA released “The Vision for Space Exploration.” The goals outlined in this document include extending the human presence in the solar system, culminating in the exploration of Mars. A key requirement for this effort is to identify a safe and effective method to process waste. Methods currently under consideration include incineration, microbial oxidation, pyrolysis, drying, and compaction. Although each has advantages, no single method has yet been developed that is safe, recovers valuable resources including oxygen and water, and has low energy and space requirements. Thus, the objective of this work is to develop a low temperature oxidation process to convert waste cleanly and rapidly to carbon dioxide and water. Previously, TDA Research, Inc. demonstrated the potential of a low temperature dry oxidation process using ozone in a small laboratory reactor.
Technical Paper

Integrated Use of Data Mining and Statistical Analysis Methods to Analyze Air Traffic Delays

2007-09-17
2007-01-3836
Linear regression is the primary data analysis method used in the development of air traffic delay models. When the data being studied does indeed have an underlying linear model, this approach would produce the best-fitting model as expected. However, it has been argued by ATM researchers [Wieland2005, Evans2004] that the underlying delay models are primarily non-linear. Furthermore, the delays being modeled often depend not only on the observable independent variables being studied but also on other variables not being considered. The traditional regression approach alone may not be best suited to study these type of problems. In this paper, we propose an alternate methodology based on partitioning the data using statistical and decision tree learning methods. We then show the utility of this model in a variety of different ATM modeling problems.
Technical Paper

Innovative Concepts for Planetary EVA Access

2007-07-09
2007-01-3245
This study introduces several new concepts for suited EVA astronaut ingress/egress (departure and return) from a pressurized planetary surface habitat, based on use of a rear-entry suit and a suit lock or suitport. We provide insight into key operational aspects and integration issues, as well as the results of a requirements analysis and risk assessment of the concepts. The risk assessment included hazard analysis, hazard mitigation techniques, failure mode assessment, and operational risk assessment. Also included are performance and mass estimates for the egress concepts, and concepts for integration of the egress concepts with potential planetary habitat designs.
Technical Paper

Development of a Pilot Scale Apparatus for Control of Solid Waste Using Low Temperature Oxidation

2007-07-09
2007-01-3135
In February 2004 NASA released “The Vision for Space Exploration.” The important goals outlined in this document include extending human presence in the solar system culminating in the exploration of Mars. Unprocessed waste poses a biological hazard to crew health and morale. The waste processing methods currently under consideration include incineration, microbial oxidation, pyrolysis and compaction. Although each has advantages, no single method has yet been developed that is safe, recovers valuable resources including oxygen and water, and has low energy and space requirements. Thus, the objective of this project is to develop a low temperature oxidation process to convert waste cleanly and rapidly to carbon dioxide and water. In the Phase I project, TDA Research, Inc. demonstrated the potential of a low temperature oxidation process using ozone. In the current Phase II project, TDA and NASA Ames Research Center are developing a pilot scale low temperature ozone oxidation system.
Technical Paper

A Prototype Pyrolysis / Oxidation System for Solid Waste Processing

2005-07-11
2005-01-3083
Pyrolysis is a very versatile waste processing technology which can be tailored to produce a variety of solid liquid and/or gaseous products. The main disadvantages of pyrolysis processing are: (1) the product stream is more complex than for many of the alternative treatments; (2) the product gases cannot be vented directly into the cabin without further treatment because of the high CO concentrations. One possible solution is to combine a pyrolysis step with catalytic oxidation (combustion) of the effluent gases. This integration takes advantage of the best features of each process, which is insensitivity to product mix, no O2 consumption, and batch processing, in the case of pyrolysis, and simplicity of the product effluent stream in the case of oxidation. In addition, this hybrid process has the potential to result in a significant reduction in Equivalent System Mass (ESM) and system complexity.
Technical Paper

A Hybrid Pyrolysis / Oxidation System for Solid Waste Resource Recovery

2004-07-19
2004-01-2380
Pyrolysis is a very versatile waste processing technology which can be tailored to produce a variety of solid, liquid, and/or gaseous products. The main disadvantages of pyrolysis processing are: (1) the product stream is more complex than for many of the alternative treatments; (2) the product gases cannot be vented directly into the cabin without further treatment because of the high CO concentrations. One possible solution is to combine a pyrolysis step with catalytic oxidation (combustion) of the effluent gases. This integration takes advantage of the best features of each process. The advantages of pyrolysis are: insensitivity to feedstock composition, no oxygen consumption, and batch operation. The main advantage of oxidation is the simplicity and consistency of the product stream. In addition, this hybrid process has the potential to result in a significant reduction in Equivalent System Mass (estimated at 10-40%) and system complexity.
Technical Paper

Considerations in Selection of Solid Waste Management Approaches in Long-Duration Space Missions

2002-07-15
2002-01-2476
Solid Waste Management (SWM) systems of current and previous space flight missions have employed relatively uncomplicated methods of waste collection, storage and return to Earth. NASA's long-term objectives, however, will likely include human-rated missions that are longer in both duration and distance, with little to no opportunity for re-supply. Such missions will likely exert increased demands upon all sub-systems, particularly the SWM system. In order to provide guidance to SWM Research and Technology Development (R&TD) efforts and overall system development, the establishment of appropriate SWM system requirements is necessary. Because future long duration missions are not yet fully defined, thorough mission-specific requirements have not yet been drafted.
Technical Paper

Fuselage and Wing Weight of Transport Aircraft

1996-10-01
965583
A method of estimating the load-bearing fuselage weight and wing weight of transport aircraft based on fundamental structural principles has been developed. This method of weight estimation represents a compromise between the rapid assessment of component weight using empirical methods based on actual weights of existing aircraft, and detailed, but time-consuming, analysis using the finite element method. The method was applied to eight existing subsonic transports for validation and correlation. Integration of the resulting computer program, PDCYL, has been made into the weights-calculating module of the AirCraft SYNThesis (ACSYNT) computer program. ACSYNT has traditionally used only empirical weight estimation methods; PDCYL adds to ACSYNT a rapid, accurate means of assessing the fuselage and wing weights of unconventional aircraft.
X