Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

System-Level Analysis of Food Moisture Content Requirements for the Mars Dual Lander Transit Mission

2004-07-19
2004-01-2364
To ensure that adequate water resources are available during a mission, any net water loss from the habitat must be balanced with an equivalent amount of makeup water. For a Mars transit mission, the primary sources of makeup water will likely involve water contained in shipped tanks and in prepackaged food. As mission length increases, it becomes more cost effective to increase system water closure (recovery and generation) than to launch adequate amounts of contained water. This trend may encourage designers to specify increased water recovery in lieu of higher food moisture content. However, food palatability requirements will likely declare that prepackaged foods have a minimum hydration (averaged over all food types). The food hydration requirement may even increase with mission duration. However, availability requirements for specific emergency scenarios may declare that determined quantities of water be provided in tanks, rather than as moisture in food.
Technical Paper

The Effect of Mission Location on Mission Costs and Equivalent System Mass

2003-07-07
2003-01-2633
Equivalent System Mass (ESM) is used by the Advanced Life Support (ALS) community to quantify mission costs of technologies for space applications (Drysdale et al, 1999, Levri et al, 2000). Mass is used as a cost measure because the mass of an object determines propulsion (acceleration) cost (i.e. amount of fuel needed), and costs relating to propulsion dominate mission cost. Mission location drives mission cost because acceleration is typically required to initiate and complete a change in location. Total mission costs may be reduced by minimizing the mass of materials that must be propelled to each distinct location. In order to minimize fuel requirements for missions beyond low-Earth orbit (LEO), the hardware and astronauts may not all go to the same location. For example, on a Lunar or Mars mission, some of the hardware or astronauts may stay in orbit while the rest of the hardware and astronauts descend to the planetary surface.
Technical Paper

Considerations in Selection of Solid Waste Management Approaches in Long-Duration Space Missions

2002-07-15
2002-01-2476
Solid Waste Management (SWM) systems of current and previous space flight missions have employed relatively uncomplicated methods of waste collection, storage and return to Earth. NASA's long-term objectives, however, will likely include human-rated missions that are longer in both duration and distance, with little to no opportunity for re-supply. Such missions will likely exert increased demands upon all sub-systems, particularly the SWM system. In order to provide guidance to SWM Research and Technology Development (R&TD) efforts and overall system development, the establishment of appropriate SWM system requirements is necessary. Because future long duration missions are not yet fully defined, thorough mission-specific requirements have not yet been drafted.
X