Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Scalability of GlennICE in a Parallel Environment

2023-06-15
2023-01-1482
The Glenn Icing Computational Environment (GlennICE) is a computational tool designed to calculate ice growth on complex three-dimensional geometries using the input from a user-supplied computational fluid dynamics (CFD) solution for the geometry of interest. The most significant developments in the advancement of GlennICE have been investigating the convergence of the collection efficiency, efficiently finding trajectories, and improving the refinement methodology. Such developments have increased the efficiency of GlennICE for practical engineering application. With the increasing demand for applying GlennICE for more memory-intensive problems, the scalability of GlennICE has yet to be investigated. This paper is aimed at presenting a method to benchmark the scalability of GlennICE utilizing a relevant engineering problem within a parallel environment.
Technical Paper

Demonstration of Initial GlennICE Relative Frame Capability: Axial-Flow Propeller

2023-06-15
2023-01-1457
Modifications have been implemented in the GlennICE software to accommodate a non-inertial reference frame. GlennICE accepts a flow solution from an external flow solver. It then introduces particles and tracks them through the flow field in a Lagrangian manner. Centrifugal and Coriolis terms were added to the GlennICE software to account for relative frame simulations. The objective of the present paper is twofold. First, to check that the new terms are implemented correctly and that the code still behaves as expected with respect to convergence. And second, to provide some initial insight into an upcoming propeller experiment in the NASA Icing Research Tunnel. The paper presents a description of the code modifications. In addition, results are presented for two operating conditions, and three particle sizes. Each case was simulated with four different grid densities to assess grid dependence.
Technical Paper

Statistical Process Control and Analysis on the Water Content Measurements in NASA Glenn’s Icing Research Tunnel

2023-06-15
2023-01-1413
The Icing Research Tunnel at NASA Glenn follows the recommended practice for calibration outlined in SAE’s ARP5905. The calibration team has followed the schedule of a full calibration every five years with a check calibration done every six months following. The liquid water content of the IRT has maintained stability within the stated specifications of variation within +/- 10% of the curve fit equation generated from calibration data. Using past measurements and data trends, IRT characterization engineers wanted to develop methods for the ability to know when data were not within variation. Trends can be observed in the liquid water content measurement process by constructing statistical process control charts. This paper describes data processing procedures for the Multi-Element Sensor in the IRT, including collision efficiency corrections, canonical correlation analysis, process for rejection of data, and construction of control charts.
Technical Paper

Impact Ice Adhesion at NASA Glenn: Current Experimental Methods and Supporting Measurements

2023-06-15
2023-01-1444
When examining the literature on the adhesion strength of impact ice, there have been a wide range of methodologies tried to measure the required stresses to induce interfacial delamination. Utilizing the Icing Research Tunnel at the NASA Glenn Research Center to generate the impact ice required for this work, several different mechanical tests have been and are being developed to determine the stresses along the interface between ice and coupon. This set of tests includes the technical mature modified lap joint test which has been used to conduct ice adhesion studies through a wide sweep of icing conditions. To conduct in situ ice adhesion measurements inside of the Icing Research Tunnel, several new experiments are currently being developed to make ice adhesion measurements during and immediately after ice accretion.
Technical Paper

Impact Ice Microstructure Segmentation Using Transfer Learned Model

2023-06-15
2023-01-1410
A process of using machine learning to segment impact ice microstructure is presented and analyzed. The microstructure of impact ice has been shown to correlate with the adhesion strength of ice. Machine vision techniques are explored as a method of decreasing analysis time. The segmentation was conducted with the goal of obtaining average grain size estimations. The model was trained on a set of micrographs of impact ice grown at NASA Glenn’s Icing Research Tunnel. The model leveraged a model pre-trained on a large set of micrographs of various materials as a starting point. Post-processing of the segmented images was done to connect broken boundaries. An automatic method of determining grain size following an ASTM standard was implemented. Segmentation results using different training sets as well as different encoder and decoder pairs are presented. Calculated sizes are compared to manual grain size measurement methods.
Technical Paper

Additional Large-Drop Ice Accretion Test Results for a Large Scale Swept Wing Section from January 2022

2023-06-15
2023-01-1382
In-flight icing is an important consideration that affects aircraft design, performance, certification and safety. Newer regulations combined with increasing demand to reduce fuel burn, emissions and noise are driving a need for improvements in icing simulation capability. To that end, this paper presents the results of additional ice accretion testing conducted in the NASA Icing Research Tunnel in January 2022 with a large swept wing section typical of a modern commercial transport. The model was based upon a section of the Common Research Model wing at the 64% semispan station with a streamwise chord length of 136 in. The test conditions were developed with an icing scaling analysis to generate similar conditions for a small median volumetric diameter (MVD) = 25 μm cloud and a large MVD = 110 μm cloud. A series of tests were conducted over a range of total temperature from -23.8 °C to -1.4 °C with all other conditions held constant.
Technical Paper

Summary of the High Ice Water Content (HIWC) RADAR Flight Campaigns

2019-06-10
2019-01-2027
NASA and the FAA conducted two flight campaigns to quantify onboard weather radar measurements with in-situ measurements of high concentrations of ice crystals found in deep convective storms. The ultimate goal of this research was to improve the understanding of high ice water content (HIWC) and develop onboard weather radar processing techniques to detect regions of HIWC ahead of an aircraft to enable tactical avoidance of the potentially hazardous conditions. Both HIWC RADAR campaigns utilized the NASA DC-8 Airborne Science Laboratory equipped with a Honeywell RDR-4000 weather radar and in-situ microphysical instruments to characterize the ice crystal clouds. The purpose of this paper is to summarize how these campaigns were conducted and highlight key results. The first campaign was conducted in August 2015 with a base of operations in Ft. Lauderdale, Florida.
Technical Paper

A Reevaluation of Appendix C Ice Roughness Using Laser Scanning

2015-06-15
2015-01-2098
Many studies have been performed to quantify the formation and evolution of roughness on ice shapes created in Appendix C icing conditions, which exhibits supercooled liquid droplets ranging from 1-50 µm. For example Anderson and Shin (1997), Anderson et al. (1998), and Shin (1994) represent early studies of ice roughness during short-duration icing events measured in the Icing Research Tunnel at the NASA Glenn Research Center. In the historical literature, image analysis techniques were employed to characterize the roughness. Using multiple images of the roughness elements, these studies of roughness focused on extracting parametric representations of ice roughness elements. While the image analysis approach enabled many insights into icing physics, recent improvements in laser scanning approaches have revolutionized the process of ice accretion shape characterization.
Technical Paper

In-flight Icing Hazard Verification with NASA's Icing Remote Sensing System for Development of a NEXRAD Icing Hazard Level Algorithm

2011-06-13
2011-38-0030
From November 2010 until May of 2011, NASA's Icing Remote Sensing System was positioned at Platteville, Colorado between the National Science Foundation's S-Pol radar and Colorado State University's CHILL radar (collectively known as FRONT, or ‘Front Range Observational Network Testbed’). This location was also underneath the flight-path of aircraft arriving and departing from Denver's International Airport, which allowed for comparison to pilot reports of in-flight icing. This work outlines how the NASA Icing Remote Sensing System's derived liquid water content and in-flight icing hazard profiles can be used to provide in-flight icing verification and validation during icing and non-icing scenarios with the purpose of comparing these times to profiles of polarized moment data from the two nearby research radars.
Technical Paper

An Overview of NASA Engine Ice-Crystal Icing Research

2011-06-13
2011-38-0017
Ice accretions that have formed inside gas turbine engines as a result of flight in clouds of high concentrations of ice crystals in the atmosphere have recently been identified as an aviation safety hazard. NASA's Aviation Safety Program (AvSP) has made plans to conduct research in this area to address the hazard. This paper gives an overview of NASA's engine ice-crystal icing research project plans. Included are the rationale, approach, and details of various aspects of NASA's research.
Technical Paper

Aerodynamic Effects of Simulated Ice Accretion on a Generic Transport Model

2011-06-13
2011-38-0065
An experimental research effort was begun to develop a database of airplane aerodynamic characteristics with simulated ice accretion over a large range of incidence and sideslip angles. Wind-tunnel testing was performed at the NASA Langley 12-ft Low-Speed Wind Tunnel using a 3.5% scale model of the NASA Langley Generic Transport Model. Aerodynamic data were acquired from a six-component force and moment balance in static-model sweeps from α = -5 to 85 deg. and β = -45 to 45 deg. at a Reynolds number of 0.24x10⁶ and Mach number of 0.06. The 3.5% scale GTM was tested in both the clean configuration and with full-span artificial ice shapes attached to the leading edges of the wing, horizontal and vertical tail. Aerodynamic results for the clean airplane configuration compared favorably with similar experiments carried out on a 5.5% scale GTM.
Journal Article

Developing Abrasion Test Standards for Evaluating Lunar Construction Materials

2009-07-12
2009-01-2377
Operational issues encountered by Apollo astronauts relating to lunar dust were catalogued, including material abrasion that resulted in scratches and wear on spacesuit components, ultimately impacting visibility, joint mobility and pressure retention. Standard methods are being developed to measure abrasive wear on candidate construction materials to be used for spacesuits, spacecraft, and robotics. Calibration tests were conducted using a standard diamond stylus scratch tip on the common spacecraft structure aluminum, Al 6061-T6. Custom tips were fabricated from terrestrial counterparts of lunar minerals for scratching Al 6061-T6 and comparing to standard diamond scratches. Considerations are offered for how to apply standards when selecting materials and developing dust mitigation strategies for lunar architecture elements.
Technical Paper

Sub-Critical Liquid Oxygen (Lox) Storage for Exploration Life Support Systems

2009-07-12
2009-01-2417
Oxygen storage and delivery systems for advanced Lunar Exploration Missions are substantially different than those of the International Space Station (ISS) or Apollo missions. The oxygen must be stored without venting for durations of 180 to 210 days prior to use and then used to supply both the steady, low pressure oxygen for the crew, and the higher-pressure oxygen for the extra-vehicular mobility unit. The baseline design is a high pressure gaseous oxygen storage system. Alternate technologies that may offer substantial advantages in terms of the equivalent system mass over the baseline design are being currently evaluated. This study examines both the supercritical and subcritical liquid oxygen storage options, including one with active cooling using a cryocooler. It is found that an actively cooled sub-critical storage system offered the lowest mass system that could satisfy the requirements.
Technical Paper

Miniaturized Sensor Systems for Early Fire Detection in Spacecraft

2009-07-12
2009-01-2469
A fire in spacecraft or habitat supporting NASA's Exploration mission could jeopardize the system, mission, and/or crew. Given adequate measures for fire prevention, the hazard from a fire can be significantly reduced if fire detection is rapid and occurs in the early stages of fire development. The simultaneous detection of both particulate and gaseous products has been proven to rapidly detect fires and accurately distinguish between real fires and nuisance sources. This paper describes the development status of gaseous and particulate sensor elements, integrated sensor systems, and system testing. It is concluded that while development is still necessary, the fundamental approach of smart, miniaturized, multisensor technology has the potential to significantly improve the safety of NASA space exploration systems.
Technical Paper

Results and Analysis from Reduced Gravity Experiments of the Flexible Membrane Commode Apparatus

2009-07-12
2009-01-2344
Two separate experimental rigs used in tests on NASA and Zero-G Corporation aircrafts flying low-gravity trajectories, and in the NASA 2.2 Second Drop Tower have been developed to test the functioning of the Flexible Membrane Commode (FMC) concept under reduced gravity conditions. The first rig incorporates the flexible, optically opaque membrane bag and the second rig incorporates a transparent chamber with a funnel assembly for evacuation that approximates the size of the membrane bag. Different waste dispensers have been used including a caulking gun and flexible hose assembly, and an injection syringe. Waste separation mechanisms include a pair of wire cutters, an iris mechanism, as well as discrete slug injection. The experimental work is described in a companion paper. This paper focuses on the obtained results and analysis of the data.
Journal Article

Test of SOI 555 Timer with High Temperature Packaging

2008-11-11
2008-01-2882
The thick oxide layer of silicon-on-insulator (SOI) devices significantly reduces the junction leakage current at elevated temperatures compared to similar Si devices, resulting in an elevated maximum operating temperature. The maximum operating temperature, specified by manufacturers, of commercial SOI devices/circuits with conventional packaging is usually 225°C. It is important to understand the performance and de-ratings of these SOI circuits at temperatures above 225°C without the temperature limit imposed by commercial packaging technology. This work tested a low frequency square-wave oscillator based on an SOI 555 Timer with a special high temperature ceramic packaging technology from room temperature to 375°C. The timer die was attached to a 96% aluminum oxide substrate with high temperature durable gold (Au) thick-film metallization, and interconnected with Au wires.
Journal Article

Lunar RFC Reliability Testing for Assured Mission Success

2008-11-11
2008-01-2901
NASA's Constellation program has selected the closed cycle hydrogen oxygen Polymer Electrolyte Membrane (PEM) regenerative Fuel Cell (RFC) as its baseline solar energy storage system for the lunar outpost and manned rover vehicles. Since the outpost and manned rovers are "human-rated", these energy storage systems will have to be of proven reliability exceeding 99 percent over the length of the mission. Because of the low (TRL=5) development state of the closed cycle hydrogen oxygen PEM RFC at present, and because there is no equivalent technology base in the commercial sector from which to draw or infer reliability information from, NASA will have to spend significant resources developing this technology from TRL 5 to TRL 9, and will have to embark upon an ambitious reliability development program to make this technology ready for a manned mission. Because NASA would be the first user of this new technology, NASA will likely have to bear all the costs associated with its development.
Technical Paper

Testing of an R134a Spray Evaporative Heat Sink

2008-06-29
2008-01-2165
The NASA Glenn Research Center has been developing a spacecraft open loop spray evaporative heat sink for use in pressure environments near sea-level, where evaporative cooling of water is not effective. The working fluid is R134a, a common refrigerant used in household appliances, considered safe and non-toxic for humans. The concept uses an open loop spray of R134a impinging on a heated flat plate, through which a closed loop of hot coolant flows, having acquired the heat from spacecraft electronics boxes, the cabin heat exchanger, and other heat sources. The latent heat of evaporation cools the outside of the hot plate, and through heat conduction, reduces the temperature of the coolant. The testing at NASA Glenn has used an electrically heated cylindrical copper target to simulate the hot plate. This paper will discuss the R134a feed system, the test matrix, and test results.
Technical Paper

Parametric Study of Ice Accretion Formation on a Swept Wing at SLD Conditions

2007-09-24
2007-01-3345
An experiment was conducted in the Icing Research Tunnel (IRT) at NASA Glenn Research Center to study the effect of sweep angle and temperature on the formation of ice accretions on a NACA 0012 swept wing at SLD conditions. From a baseline Appendix-C condition with a MVD of 20m the drop size was changed to 110 and 200m for the SLD cases. Casting data, ice shape tracings, time-sequence and photographic data were obtained. Time-sequence photography was taken during each run to capture in real time the formation of the ice accretion. Measurements of the critical distance were obtained.
Technical Paper

Status, Vision, and Challenges of an Intelligent Distributed Engine Control Architecture

2007-09-17
2007-01-3859
A Distributed Engine Control Working Group (DECWG) consisting of the Department of Defense (DoD), the National Aeronautics and Space Administration (NASA)- Glenn Research Center (GRC) and industry has been formed to examine the current and future requirements of propulsion engine systems. The scope of this study will include an assessment of the paradigm shift from centralized engine control architecture to an architecture based on distributed control utilizing open system standards. Included will be a description of the work begun in the 1990's, which continues today, followed by the identification of the remaining technical challenges which present barriers to on-engine distributed control.
X