Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Comparability of Hot-Wire Estimates of Liquid Water Content in SLD Conditions

2023-06-15
2023-01-1423
Future compliance to FAA 14 CFR Part 25 and EASA CS-25 Appendix O conditions has required icing wind tunnels to expand their cloud simulation envelope, and demonstrate accurate calibration of liquid water content and droplet particle size distributions under these conditions. This has led to a renewed community interest in the accuracy of these calibrations, and the potential inter-facility bias due to the choice of instrumentation and processing methods. This article provides a comparison of the response of various hot-wire liquid water content instruments under Appendix C and supercooled large droplet conditions, after an independent similar analysis at other wind tunnel facilities. The instruments are being used, or are under consideration for use, by facilities collaborating in the ICE GENESIS program.
Technical Paper

A New 1D2D Optical Array Particle Imaging Probe for Airborne and Ground Simulation Cloud Measurements

2023-06-15
2023-01-1415
A new optical array imaging probe, called the 1D2D probe, has been developed by Science Engineering Associates, with features added to improve the real-time and post-analysis measurements of particle spectra, particularly in the Supercooled Large Droplet size range. The probe uses optical fibers and avalanche photodiodes to achieve a very high frequency response, and a Field-Programmable Gate Array that performs real-time particle rejection and processing of accepted particles with negligible inter-particle dead time. The probe records monochromatic two-dimensional images, while also recording the number of individual particle pixels at a second grey scale level. The probe implements flexible features to filter recording of highly out of focus particles to improve the accuracy of particle size determination, or to reject small particles to improve the statistics of measurements of larger particles.
Technical Paper

The Influence of SLD Drop Size Distributions on Ice Accretion in the NASA Icing Research Tunnel

2019-06-10
2019-01-2022
An ice shape database has been created to document ice accretions on a 21-inch chord NACA0012 model and a 72-inch chord NACA 23012 airfoil model resulting from an exposure to a Supercooled Large Drop (SLD) icing cloud with a bimodal drop size distribution. The ice shapes created were documented with photographs, laser scanned surface measurements over a section of the model span, and measurement of the ice mass over the same section of each accretion. The icing conditions used in the test matrix were based upon previously used conditions on the same models but with an alternate approach to evaluation of drop distribution effects. Ice shapes resulting from the bimodal distribution as well as from equivalent monomodal drop size distributions were obtained and compared.
Technical Paper

Radar Detection of High Concentrations of Ice Particles - Methodology and Preliminary Flight Test Results

2019-06-10
2019-01-2028
High Ice Water Content (HIWC) has been identified as a primary causal factor in numerous engine events over the past two decades. Previous attempts to develop a remote detection process utilizing modern commercial radars have failed to produce reliable results. This paper discusses the reasons for previous failures and describes a new technique that has shown very encouraging accuracy and range performance without the need for any modifications to industry’s current radar design(s). The performance of this new process was evaluated during the joint NASA/FAA HIWC RADAR II Flight Campaign in August of 2018. Results from that evaluation are discussed, along with the potential for commercial application, and development of minimum operational performance standards for future radar products.
Technical Paper

Experimental Aerodynamic Simulation of Glaze Ice Accretion on a Swept Wing

2019-06-10
2019-01-1987
Aerodynamic assessment of icing effects on swept wings is an important component of a larger effort to improve three-dimensional icing simulation capabilities. An understanding of ice-shape geometric fidelity and Reynolds and Mach number effects on iced-wing aerodynamics is needed to guide the development and validation of ice-accretion simulation tools. To this end, wind-tunnel testing was carried out for 8.9% and 13.3% scale semispan wing models based upon the Common Research Model airplane configuration. Various levels of geometric fidelity of an artificial ice shape representing a realistic glaze-ice accretion on a swept wing were investigated. The highest fidelity artificial ice shape reproduced all of the three-dimensional features associated with the glaze ice accretion. The lowest fidelity artificial ice shapes were simple, spanwise-varying horn ice geometries intended to represent the maximum ice thickness on the wing upper surface.
Technical Paper

A CFD Approach for Predicting 3D Ice Accretion on Aircraft

2011-06-13
2011-38-0044
In this work, a newly developed iced-aircraft modeling tool is applied to wings, engine inlets, and helicopter rotors. The tool is based on a multiscale-physics, unstructured finite-volume CFD approach and is applicable to general purpose aircraft icing applications. The present approach combines an Eulerian-based droplet-trajectory solver that is loosely coupled, in a time-accurate manner, to a surface-film and ice-evolution model. The goal of the model is to improve the fidelity of ice accretion modeling on dynamic geometries and for three-dimensional ice shapes typical of helicopter rotors. The numerical formulation is discussed and presented alongside 2D and 3D static validation cases, and dynamic helicopter rotors. The present results display good validation for predicting ice shape on a variety of geometries, and a strong initial capability of modeling ice forming on helicopters in forward flight.
X