Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Solar Power System Analyses for Electric Propulsion Missions

1999-08-02
1999-01-2449
Solar electric propulsion (SEP) mission architectures are applicable to a wide range of NASA missions including human Mars exploration and robotic exploration of the outer planets. In this paper, we discuss the conceptual design and detailed performance analysis of an SEP stage electric power system (EPS). EPS performance, mass and area predictions are compared for several PV array technologies. Based on these studies, an EPS design for a 1-MW class, Human Mars Mission SEP stage was developed with a reasonable mass, 9.4 metric tons, and feasible deployed array area, 5800 m2. An EPS was also designed for the Europa Mapper spacecraft and had a mass of 151 kg and a deployed array area of 106 m2.
Technical Paper

Technology Development for a Stirling Radioisotope Power System for Deep Space Missions

1999-08-02
1999-01-2454
NASA Glenn Research Center and the Department of Energy (DOE) are developing a Stirling converter for an advanced radioisotope power system to provide spacecraft on-board electric power for NASA deep space missions. NASA Glenn is addressing key technology issues through the use of two NASA Phase II SBIRs with Stirling Technology Company (STC) of Kennewick, WA. Under the first SBIR, STC demonstrated a parallel connection of two thermodynamically independent free-piston Stirling converters and a 40 to 50 fold reduction in vibrations compared to an unbalanced converter. The second SBIR is for the development of an Adaptive Vibration Reduction System (AVRS) that will practically eliminate vibrations over an entire mission lifetime, even with one failed converter. This paper discusses the status and results for these two SBIR projects and also presents results for characterizing the friction factor of high-porosity random fiber regenerators that were evaluated for this application.
Technical Paper

Transient Thermal Analysis of a Refractive Secondary Solar Concentrator

1999-08-02
1999-01-2680
A secondary concentrator is an optical device that accepts solar energy from a primary concentrator and further intensifies and directs the solar flux. The refractive secondary is one such device; fabricated from an optically clear solid material that can efficiently transmit the solar energy by way of refraction and total internal reflection. When combined with a large state-of-the-art rigid or inflatable primary concentrator, the refractive secondary enables solar concentration ratios of 10,000 to 1. In support of potential space solar thermal power and propulsion applications, the NASA Glenn Research Center is developing a single-crystal refractive secondary concentrator for use at temperatures exceeding 2000K. Candidate optically clear single-crystal materials like sapphire and zirconia are being evaluated for this application.
Technical Paper

Refractive Secondary Concentrators for Solar Thermal Applications

1999-08-02
1999-01-2678
The NASA Glenn Research Center is developing technologies that utilize solar energy for various space applications including electrical power conversion, thermal propulsion, and furnaces. Common to all of these applications is the need for highly efficient, solar concentration systems. An effort is underway to develop the innovative single crystal refractive secondary concentrator, which uses refraction and total internal reflection to efficiently concentrate and direct solar energy. The refractive secondary offers very high throughput efficiencies (> 90%), and when used in combination with advanced primary concentrators, enables very high concentration ratios (10,000 to 1) and very high temperatures (> 2000 K).
X