Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Assessing Biofidelity of the Test Device for Human Occupant Restraint (THOR) Against Historic Human Volunteer Data

2013-11-11
2013-22-0018
The National Aeronautics and Space Administration (NASA) is interested in characterizing the responses of THOR (test device for human occupant restraint) anthropometric test device (ATD) to representative loading acceleration pulse s. Test conditions were selected both for their applicability to anticipated NASA landing scenarios, and for comparison to human volunteer data previously collected by the United States Air Force (USAF). THOR impact testing was conducted in the fore-to-aft frontal (-x) and in the upward spinal (-z) directions with peak sled accelerations ranging from 8 to 12 G and rise times of 40, 70, and 100ms. Each test condition was paired with historical huma n data sets under similar test conditions that were also conducted on the Horizontal Impulse Accelerator (HIA). A correlation score was calculated for each THOR to human comparison using CORA (CORrelation and Analysis) software.
Technical Paper

Overview of NASA's Thermal Control System Development for Exploration Project

2009-07-12
2009-01-2436
NASA's Constellation Program includes the Orion, Altair, and Lunar Surface Systems (LSS) project offices. The first two elements, Orion and Altair, are manned space vehicles while the third element is broader and includes several subelements including Rovers and a Lunar Habitat. The upcoming planned missions involving these systems and vehicles include several risks and design challenges. Due to the unique thermal environment, many of these risks and challenges are associated with the vehicles' thermal control system. NASA's Exploration Systems Mission Directorate (ESMD) includes the Exploration Technology Development Program (ETDP). ETDP consists of several technology development projects. The project chartered with mitigating the aforementioned risks and design challenges is the Thermal Control System Development for Exploration Project.
Technical Paper

Demonstration of Super Cooled Ice as a Phase Change Material Heat Sink for Portable Life Support Systems

2009-07-12
2009-01-2405
A phase change material (PCM) heat sink using super cooled ice as a non-toxic, non-flammable PCM is being developed for use in a portable life support system (PLSS). The latent heat of fusion for water is approximately 70% larger than most paraffin waxes, which can provide significant mass savings. Further mass reduction is accomplished by super cooling the ice significantly below its freezing temperature for additional sensible heat storage. Expansion and contraction of the water as it freezes and melts is accommodated with the use of flexible bag and foam materials. A demonstrator unit has been designed, built, and tested to demonstrate proof of concept. Both testing and modeling results are presented.
Technical Paper

Advanced Design Heat Pump/Radiator for EVA Suits

2009-07-12
2009-01-2406
Absorption cooling using a lithium chloride/water heat pump can enable lightweight and effective thermal control for Extravehicular Activity (EVA) suits without venting water to the environment. The key components in the system are an absorber/radiator that rejects heat to space and a flexible evaporation cooling garment that absorbs heat from the crew member, This paper describes progress in the design, development, and testing of the absorber/radiator and evaporation cooling garment. New design concepts and fabrication approaches will significantly reduce the mass of the absorber/radiator. We have also identified materials and demonstrated fabrication approaches for production of a flexible evaporation cooling garment, Data from tests of the system's modular components have validated the design models and allowed predictions of the size and weight of a complete system.
Technical Paper

Anthropometric and Blood Flow Characteristics Leading to EVA Hand Injury

2009-07-12
2009-01-2471
The aim of this study was to explore if fingernail delamination injury following EMU glove use may be caused by compression-induced blood flow occlusion in the finger. During compression tests, finger blood flow decreased more than 60%, however this occurred more rapidly for finger pad compression (4 N) than for fingertips (10 N). A pressure bulb compression test resulted in 50% and 45% decreased blood flow at 100 mmHg and 200 mmHg, respectively. These results indicate that the finger pad pressure required to articulate stiff gloves is more likely to contribute to injury than the fingertip pressure associated with tight fitting gloves.
Technical Paper

Development of Life Support System Technologies for Human Lunar Missions

2009-07-12
2009-01-2483
With the Preliminary Design Review (PDR) for the Orion Crew Exploration Vehicle planned to be completed in 2009, Exploration Life Support (ELS), a technology development project under the National Aeronautics and Space Administration's (NASA) Exploration Technology Development Program, is focusing its efforts on needs for human lunar missions. The ELS Project's goal is to develop and mature a suite of Environmental Control and Life Support System (ECLSS) technologies for potential use on human spacecraft under development in support of U.S. Space Exploration Policy. ELS technology development is directed at three major vehicle projects within NASA's Constellation Program (CxP): the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems, including habitats and pressurized rovers.
Technical Paper

Pulmonary Toxicity of Lunar Highland Dust

2009-07-12
2009-01-2379
Lunar dust exposures occurred during the Apollo missions while the crew was in the lunar module on the moon's surface and especially when micro-gravity conditions were attained during rendezvous in lunar orbit. Crews reported that the dust was irritating to the eyes, and in some cases, respiratory symptoms were elicited. NASA's current vision for lunar exploration includes stays of 6 months on the lunar surface hence the health effects of periodic exposure to lunar dust in the habitat need to be assessed. NASA is performing this assessment with a series of in vitro and in vivo tests with authentic lunar dust. Our approach is to “calibrate” the intrinsic toxicity of lunar dust by comparison to a relatively low toxicity dust (TiO2) and a highly toxic dust (quartz) using intrapharyngeal instillation of the dusts to mice. A battery of indices of toxicity is assessed at various time points after the instillations.
Technical Paper

Subjective Perception of Thermal and Physical Comfort in Three Liquid Cooling Garments

2009-07-12
2009-01-2516
The subjective aspects of comfort in three different cooling garments, the MACS-Delphi, Russian Orlan, and LCVG were evaluated. Six subjects (4 males and 2 females) were tested in separate sessions in each garment and in one of two environmental chamber conditions: 24°C and 35°C. Subjects followed a staged exercise/rest protocol with different levels of physical exertion at different stages. Thermal comfort and heat perception were assessed by ratings on visual analog scales. Ratings of physical comfort of the garment and also garment flexibility in positions simulating movements during planetary exploration were also obtained. The findings indicated that both overall thermal comfort and head thermal comfort were rated highest in the MACS-Delphi at 24°C. The Orlan was rated lowest on physical comfort and less flexible in different body positions.
Technical Paper

The Advanced Design of a Liquid Cooling Garment Through Long-Term Research: Implications of the Test Results on Three Different Garments

2009-07-12
2009-01-2517
The most recent goal of our research program was to identify the optimal features of each of three garments to maintain core temperature and comfort under intensive physical exertion. Four males and 2 females between the ages of 22 and 46 participated in this study. The garments evaluated were the MACS-Delphi, Russian Orlan, and NASA LCVG. Subjects were tested on different days in 2 different environmental chamber temperature/humidity conditions (24°C/H∼28%; 35°C/H∼20%). Each session consisted of stages of treadmill walking/running (250W to 700W at different stages) and rest. In general, the findings showed few consistent differences among the garments. The MACS-Delphi was better able to maintain subjects within a skin and core temperature comfort zone than was evident in the other garments as indicated by a lesser fluctuation in temperatures across physical exertion levels.
Technical Paper

Life Support Requirements and Technology Challenges for NASA's Constellation Program

2008-06-29
2008-01-2018
NASA's Constellation Program, which includes the mission objectives of establishing a permanently-manned lunar Outpost, and the exploration of Mars, poses new and unique challenges for human life support systems that will require solutions beyond the Shuttle and International Space Station state of the art systems. In particular, the requirement to support crews for extended durations at the lunar outpost with limited resource resupply capability will require closed-loop regenerative life support systems with minimal expendables. Planetary environmental conditions such as lunar dust and extreme temperatures, as well as the capability to support frequent and extended-duration Extra-vehicular Activity's (EVA's) will be particularly challenging.
Technical Paper

Life Support System Technology Development Supporting Human Space Exploration

2008-06-29
2008-01-2185
Exploration Life Support (ELS) is a technology development project under the National Aeronautics and Space Administration's (NASA) Exploration Technology Development Program. The ELS Project's goal is to develop and mature a suite of Environmental Control and Life Support System (ECLSS) technologies for potential use on human spacecraft under development in support of U.S. Space Exploration Policy. Technology development is directed at three major vehicle projects within NASA's Constellation Program: the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems, including habitats and pressurized rovers. The ELS Project includes four technical elements: Atmosphere Revitalization Systems, Water Recovery Systems, Waste Management Systems and Habitation Engineering, and two cross cutting elements, Systems Integration, Modeling and Analysis, and Validation and Testing.
Journal Article

Post-Landing Orion Crew Survival in Warm Ocean Areas: A Case Study in Iterative Environmental Design

2008-06-29
2008-01-2080
The Orion crew module (CM) is being designed to perform survivable land and water landings. There are many issues associated with post-landing crew survival. In general, the most challenging of the realistic Orion landing scenarios from an environmental control standpoint is the off-nominal water landing. Available power and other consumables will be very limited after landing, and it may not be possible to provide full environmental control within the crew cabin for very long after splashdown. Given the bulk and thermal insulation characteristics of the crew-worn pressure suits, landing in a warm tropical ocean area would pose a risk to crew survival from elevated core body temperatures, if for some reason the crewmembers were not able to remove their suits and/or exit the vehicle. This paper summarizes the analyses performed and conclusions reached regarding post-landing crew survival following a water landing, from the standpoint of the crew's core body temperatures.
Journal Article

Common Helmet Design for Launch, Entry, & Abort and EVA Activities – A Discussion on the Design and Selection Process of Helmets for Future Manned Flight

2008-06-29
2008-01-1991
Effective helmet performance is a critical component to achieving safe and efficient missions along the entire timeline; from launch and entry events to operations in a micro-gravity environment to exploration of a planetary surface, the helmet system is the capstone of the pressurized space suit assembly. Each phase of a mission requires uncompromising protection in the form of a robust pressure vessel and adequate protection from impact, both interior and exterior, all while remaining relatively comfortable and providing excellent visual interaction with the environment. Historically there have been large voids between these critical characteristics with the primary focus concerning the pressure vessel first and impact protection and crew comfort second. ILC Dover, NASA-JSC, Gentex Corporation, and Hamilton Sundstrand formed an Integrated Product Team (IPT) and conducted a NASA funded study to research and evaluate new concepts in helmet design.
Technical Paper

Cascade Distillation Subsystem Development Testing

2008-01-29
2008-01-2195
Recovery of potable water from wastewater is essential for the success of long-term manned missions to the moon and Mars. Honeywell International and the team consisting of Thermodistillation Company (Kyiv, Ukraine) and NASA Johnson Space Center (JSC) Crew and Thermal Systems Division are developing a wastewater processing subsystem that is based on centrifugal vacuum distillation. The Wastewater Processing Cascade Distillation Subsystem (CDS) utilizes an innovative and efficient multi-stage thermodynamic process to produce purified water. The rotary centrifugal design of the system also provides gas/liquid phase separation and liquid transport under microgravity conditions. A five-stage prototype of the subsystem was built, delivered and integrated into the NASA JSC Advanced Water Recovery Systems Development Facility for development testing.
Technical Paper

The CEV Smart Buyer Team Effort: A Summary of the Crew Module & Service Module Thermal Design Architecture

2007-07-09
2007-01-3046
The NASA-wide CEV Smart Buyer Team (SBT) was assembled in January 2006 and was tasked with the development of a NASA in-house design for the CEV Crew Module (CM), Service Module (SM), and Launch Abort System (LAS). This effort drew upon over 250 engineers from all of the 10 NASA Centers. In 6 weeks, this in-house design was developed. The Thermal Systems Team was responsible for the definition of the active and passive design architecture. The SBT effort for Thermal Systems can be best characterized as a design architecting activity. Proof-of-concepts were assessed through system-level trade studies and analyses using simplified modeling. This nimble design approach permitted definition of a point design and assessing its design robustness in a timely fashion. This paper will describe the architecting process and present trade studies and proposed thermal designs
Technical Paper

Crew Exploration Vehicle Environmental Control and Life Support Design Reference Missions

2007-07-09
2007-01-3041
In preparation for the contract award of the Crew Exploration Vehicle (CEV), the National Aeronautics and Space Administration (NASA) produced two design reference missions for the vehicle. The design references used teams of engineers across the agency to come up with two configurations. This process helped NASA understand the conflicts and limitations in the CEV design, and investigate options to solve them.
Technical Paper

Access Systems for Partial Gravity Exploration & Rescue: Results from Prototype Testing in an Analog Environment

2007-07-09
2007-01-3033
An EVA simulation with a medical contingency scenario was conducted in 2006 with the NASA Haughton-Mars and EVA Physiology System and Performance Projects, to develop medical contingency management and evacuation techniques for planetary surface exploration. A rescue/evacuation system to allow two rescuer astronauts to evacuate one incapacitated astronaut was evaluated. The rescue system was utilized effectively to extract an injured astronaut up a slope of15-25° and into a surface mobility rover for transport to a simulated habitat for advanced medical care. Further research is recommended to evaluate the effects of reduced gravity and to develop synergies with other surface systems for carrying out the contingency procedures.
Technical Paper

Continuously Regenerable Freeze-Out CO2 Control Technology

2007-07-09
2007-01-3270
Carbon dioxide (CO2) removal technology development for portable life support systems (PLSS) has traditionally concentrated in the areas of solid and liquid chemical sorbents and semi-permeable membranes. Most of these systems are too heavy in gravity environments, require prohibitive amounts of consumables for operation on long term planetary missions, or are inoperable on the surface of Mars due to the presence of a CO2 atmosphere. This paper describes the effort performed to mature an innovative CO2 removal technology that meets NASA's planetary mission needs while adhering to the important guiding principles of simplicity, reliability, and operability. A breadboard cryogenic carbon dioxide scrubber for an ejector-based cryogenic PLSS was developed, designed, and tested. The scrubber freezes CO2 and other trace contaminants out of expired ventilation loop gas using cooling available from a liquid oxygen (LOX) based PLSS.
Technical Paper

A New Method for Breath Capture Inside a Space Suit Helmet

2007-07-09
2007-01-3248
This project investigates methods to capture an astronaut's exhaled carbon dioxide (CO2) before it becomes diluted with the high volumetric oxygen flow present within a space suit. Typical expired breath contains CO2 partial pressures (pCO2) in the range of 20-35 mm Hg (.0226-.046 atm). This research investigates methods to capture the concentrated CO2 gas stream prior to its dilution with the low pCO2 ventilation flow. Specifically this research is looking at potential designs for a collection cup for use inside the space suit helmet. The collection cup concept is not the same as a breathing mask typical of that worn by firefighters and pilots. It is well known that most members of the astronaut corps view a mask as a serious deficiency in any space suit helmet design. Instead, the collection cup is a non-contact device that will be designed using a detailed Computational Fluid Dynamic (CFD) analysis of the ventilation flow environment within the helmet.
Technical Paper

Digital Learning Network Education Events for the Desert Research and Technology Studies

2007-07-09
2007-01-3063
NASA's Digital Learning Network (DLN) reaches out to thousands of students each year through video conferencing and webcasting. As part of NASA's Strategic Plan to reach the next generation of space explorers, the DLN develops and delivers educational programs that reinforce principles in the areas of science, technology, engineering and mathematics. The DLN has created a series of live education videoconferences connecting the Desert Research and Technology Studies (RATS) field test to students across the United States. The programs are also extended to students around the world via live webcasting. The primary focus of the events is the Vision for Space Exploration. During the programs, Desert RATS engineers and scientists inform and inspire students about the importance of exploration and share the importance of the field test as it correlates with plans to return to the Moon and explore Mars. This paper describes the events that took place in September 2006.
X