Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Proposed Byzantine Fault-Tolerant Voting Architecture using Time-Triggered Ethernet

2017-09-19
2017-01-2111
Over the last couple decades, there has been a growing interest in incorporating commercial off-the-shelf (COTS) technologies and open standards in the design of human-rated spacecraft. This approach is intended to reduce development and upgrade costs, lower the need for new design work, eliminate reliance on individual suppliers, and minimize schedule risk. However, it has not traditionally been possible for COTS solutions to meet the high reliability and fault tolerance requirements of systems implementing critical spacecraft functions. Byzantine faults are considered particularly dangerous to such systems because of their ability to escape traditional means of fault containment and disrupt consensus between system components. In this paper, we discuss the design of a voting protocol using Time-Triggered Ethernet capable of achieving data integrity in the presence of a single Byzantine fault.
Technical Paper

Assessing Biofidelity of the Test Device for Human Occupant Restraint (THOR) Against Historic Human Volunteer Data

2013-11-11
2013-22-0018
The National Aeronautics and Space Administration (NASA) is interested in characterizing the responses of THOR (test device for human occupant restraint) anthropometric test device (ATD) to representative loading acceleration pulse s. Test conditions were selected both for their applicability to anticipated NASA landing scenarios, and for comparison to human volunteer data previously collected by the United States Air Force (USAF). THOR impact testing was conducted in the fore-to-aft frontal (-x) and in the upward spinal (-z) directions with peak sled accelerations ranging from 8 to 12 G and rise times of 40, 70, and 100ms. Each test condition was paired with historical huma n data sets under similar test conditions that were also conducted on the Horizontal Impulse Accelerator (HIA). A correlation score was calculated for each THOR to human comparison using CORA (CORrelation and Analysis) software.
Journal Article

Development and Testing of a Sorbent-Based Atmosphere Revitalization System 2008/2009

2009-07-12
2009-01-2445
The design and evaluation of a Vacuum-Swing Adsorption (VSA) system to remove metabolic water and metabolic carbon dioxide from a spacecraft atmosphere is presented. The approach for Orion and Altair is a VSA system that removes not only 100 percent of the metabolic CO2 from the atmosphere, but also 100% of the metabolic water as well, a technology approach that has not been used in previous spacecraft life support systems. The design and development of an Orion Crew Exploration Vehicle Sorbent Based Atmosphere Revitalization system, including test articles, a facility test stand, and full-scale testing in late 2008 and early 2009 is discussed.
Journal Article

A History of Space Toxicology Mishaps: Lessons Learned and Risk Management

2009-07-12
2009-01-2591
After several decades of human spaceflight, the community of space-faring nations has accumulated a diverse and sometimes harrowing history of toxicological events that have plagued human space endeavors almost from the very beginning. Some lessons have been learned in ground-based test beds and others were discovered the hard way - when human lives were at stake in space. From such lessons one can build a risk-management framework for toxicological events to minimize the probability of a harmful exposure, while recognizing that we cannot predict all possible events. Space toxicologists have learned that relatively harmless compounds can be converted by air revitalization systems into compounds that cause serious harm to the crew.
Journal Article

Engineered Structured Sorbents for the Adsorption of Carbon Dioxide and Water Vapor from Manned Spacecraft Atmospheres: Applications and Testing 2008/2009

2009-07-12
2009-01-2444
Developmental efforts are seeking to improve upon the efficiency and reliability of typical packed beds of sorbent pellets by using structured sorbents and alternative bed configurations. The benefits include increased structural stability gained by eliminating clay bound zeolite pellets that tend to fluidize and erode, and better thermal control during sorption leading to increased process efficiency. Test results that demonstrate such improvements are described and presented.
Technical Paper

Overview of NASA's Thermal Control System Development for Exploration Project

2009-07-12
2009-01-2436
NASA's Constellation Program includes the Orion, Altair, and Lunar Surface Systems (LSS) project offices. The first two elements, Orion and Altair, are manned space vehicles while the third element is broader and includes several subelements including Rovers and a Lunar Habitat. The upcoming planned missions involving these systems and vehicles include several risks and design challenges. Due to the unique thermal environment, many of these risks and challenges are associated with the vehicles' thermal control system. NASA's Exploration Systems Mission Directorate (ESMD) includes the Exploration Technology Development Program (ETDP). ETDP consists of several technology development projects. The project chartered with mitigating the aforementioned risks and design challenges is the Thermal Control System Development for Exploration Project.
Technical Paper

Modification of the USOS to Support Installation and Activation of the Node 3 Element

2009-07-12
2009-01-2416
The International Space Station (ISS) program is nearing an assembly complete configuration with the addition of the final resource node module in early 2010. The Node 3 module will provide critical functionality in support of permanent long duration crews aboard ISS. The new module will permanently house the regenerative Environment Control and Life Support Systems (ECLSS) and will also provide important habitability functions such as waste management and exercise facilities. The ISS program has selected the Port side of the Node 1 “Unity” module as the permanent location for Node 3 which will necessitate architecture changes to provide the required interfaces. The USOS ECLSS fluid and ventilation systems, Internal Thermal Control Systems, and Avionics Systems require significant modifications in order to support Node 3 interfaces at the Node 1 Port location since it was not initially designed for that configuration.
Technical Paper

Investigation of Transient Sublimator Performance

2009-07-12
2009-01-2480
Sublimators have been used for heat rejection in a variety of space applications including the Apollo Lunar Module and the Extravehicular Mobility Unit (EMU). Sublimators typically operate with steady-state feedwater utilization at or near 100%. However, sublimators are currently being considered to operate in a cyclical topping mode during low lunar orbit for Altair and possibly Orion, which represents a new mode of operation. This paper will investigate the feedwater utilization when a sublimator is used in this nontraditional manner. This paper includes testing efforts to date to investigate the Orbit-Averaged Feedwater Utilization (OAFU) for a sublimator.
Technical Paper

Anthropometric and Blood Flow Characteristics Leading to EVA Hand Injury

2009-07-12
2009-01-2471
The aim of this study was to explore if fingernail delamination injury following EMU glove use may be caused by compression-induced blood flow occlusion in the finger. During compression tests, finger blood flow decreased more than 60%, however this occurred more rapidly for finger pad compression (4 N) than for fingertips (10 N). A pressure bulb compression test resulted in 50% and 45% decreased blood flow at 100 mmHg and 200 mmHg, respectively. These results indicate that the finger pad pressure required to articulate stiff gloves is more likely to contribute to injury than the fingertip pressure associated with tight fitting gloves.
Technical Paper

Development of Life Support System Technologies for Human Lunar Missions

2009-07-12
2009-01-2483
With the Preliminary Design Review (PDR) for the Orion Crew Exploration Vehicle planned to be completed in 2009, Exploration Life Support (ELS), a technology development project under the National Aeronautics and Space Administration's (NASA) Exploration Technology Development Program, is focusing its efforts on needs for human lunar missions. The ELS Project's goal is to develop and mature a suite of Environmental Control and Life Support System (ECLSS) technologies for potential use on human spacecraft under development in support of U.S. Space Exploration Policy. ELS technology development is directed at three major vehicle projects within NASA's Constellation Program (CxP): the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems, including habitats and pressurized rovers.
Technical Paper

First Human Testing of the Orion Atmosphere Revitalization Technology

2009-07-12
2009-01-2456
A system of amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and is baselined for the Orion Atmosphere Revitalization System (ARS). In two previous years at this conference, reports were presented on extensive Johnson Space Center (JSC) testing of the technology, which was performed in a representative environment with simulated human metabolic loads. The next step in developmental testing at JSC was to use real human loads in the spring of 2008.
Technical Paper

A Method for and Issues Associated with the Determination of Space Suit Joint Requirements

2009-07-12
2009-01-2537
In the design of a new space suit it is necessary to have requirements that define what mobility space suit joints should be capable of achieving in both a system and at the component level. NASA elected to divide mobility into its constituent parts -- range of motion (ROM) and torque -- in an effort to develop clean design requirements that limit subject performance bias and are easily verified. Unfortunately, the measurement of mobility can be difficult to obtain. Current technologies, such as the Vicon motion capture system, allow for the relatively easy benchmarking of range of motion (ROM) for a wide array of space suit systems. The ROM evaluations require subjects in the suit to accurately evaluate the ranges humans can achieve in the suit. However, when it comes to torque, there are significant challenges for both benchmarking current performance and writing requirements for future suits.
Technical Paper

The Advanced Design of a Liquid Cooling Garment Through Long-Term Research: Implications of the Test Results on Three Different Garments

2009-07-12
2009-01-2517
The most recent goal of our research program was to identify the optimal features of each of three garments to maintain core temperature and comfort under intensive physical exertion. Four males and 2 females between the ages of 22 and 46 participated in this study. The garments evaluated were the MACS-Delphi, Russian Orlan, and NASA LCVG. Subjects were tested on different days in 2 different environmental chamber temperature/humidity conditions (24°C/H∼28%; 35°C/H∼20%). Each session consisted of stages of treadmill walking/running (250W to 700W at different stages) and rest. In general, the findings showed few consistent differences among the garments. The MACS-Delphi was better able to maintain subjects within a skin and core temperature comfort zone than was evident in the other garments as indicated by a lesser fluctuation in temperatures across physical exertion levels.
Technical Paper

Life Support Requirements and Technology Challenges for NASA's Constellation Program

2008-06-29
2008-01-2018
NASA's Constellation Program, which includes the mission objectives of establishing a permanently-manned lunar Outpost, and the exploration of Mars, poses new and unique challenges for human life support systems that will require solutions beyond the Shuttle and International Space Station state of the art systems. In particular, the requirement to support crews for extended durations at the lunar outpost with limited resource resupply capability will require closed-loop regenerative life support systems with minimal expendables. Planetary environmental conditions such as lunar dust and extreme temperatures, as well as the capability to support frequent and extended-duration Extra-vehicular Activity's (EVA's) will be particularly challenging.
Technical Paper

Reconfigurable Control System Design for Future Life Support Systems

2008-06-29
2008-01-1976
A reconfigurable control system is an intelligent control system that detects faults within the system and adjusts its performance automatically to avoid mission failure, save lives, and reduce system maintenance costs. The concept was first successfully demonstrated by NASA between December 1989 and March 1990 on the F-15 flight control system (SRFCS), where software was integrated into the aircraft's digital flight control system to compensate for component loss by reconfiguring the remaining control loop. This was later adopted in the Boeing X-33. Other applications include modular robotics, reconfigurable computing structure, and reconfigurable helicopters. The motivation of this work is to test such control system designs for future long term space missions, more explicitly, the automation of life support systems.
Technical Paper

Life Support System Technology Development Supporting Human Space Exploration

2008-06-29
2008-01-2185
Exploration Life Support (ELS) is a technology development project under the National Aeronautics and Space Administration's (NASA) Exploration Technology Development Program. The ELS Project's goal is to develop and mature a suite of Environmental Control and Life Support System (ECLSS) technologies for potential use on human spacecraft under development in support of U.S. Space Exploration Policy. Technology development is directed at three major vehicle projects within NASA's Constellation Program: the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems, including habitats and pressurized rovers. The ELS Project includes four technical elements: Atmosphere Revitalization Systems, Water Recovery Systems, Waste Management Systems and Habitation Engineering, and two cross cutting elements, Systems Integration, Modeling and Analysis, and Validation and Testing.
Technical Paper

Development Status of the Contaminant Insensitive Sublimator

2008-06-29
2008-01-2168
Sublimators have been used for heat rejection for a variety of space applications including the Apollo Lunar Module and the Extravehicular Mobility Unit (EMU). Some of the attractive features of sublimators are that they are compact, lightweight, and self-regulating. One of the drawbacks to previous designs has been sensitivity to non-volatile contamination in the feedwater, which can clog relatively small pores (∼3-µ6 μn) in the porous plates where ice forms and sublimates. The Contaminant Insensitive Sublimator (CIS) has been recently developed at NASA-JSC to be less sensitive to contaminants by using a larger pore size media (−350 um). Testing of a CIS Engineering Development Unit (EDU) has demonstrated good heat rejection performance. This paper describes testing that investigates different factors affecting efficient utilization of the feedwater.
Technical Paper

International Space Station (ISS) Environmental Control and Life Support (ECLS) System Overview of Events: February 2007-2008

2008-06-29
2008-01-2132
The International Space Station (ISS) continues to mature and operate its life support equipment. Major events occurring between February 2007 and February 2008 are discussed in this paper, as are updates from previously ongoing hardware anomalies. This paper addresses the major ISS operation events over the last year. Impact to overall ISS operations is also discussed.
Technical Paper

Evaluation of Commercial Off-the-Shelf Ammonia Sorbents and Carbon Monoxide Oxidation Catalysts

2008-06-29
2008-01-2097
Designers of future space vehicles envision simplifying the Atmosphere Revitalization (AR) system by combining the functions of trace contaminant (TC) control and carbon dioxide removal into one swing-bed system. Flow rates and bed sizes of the TC and CO2 systems have historically been very different. There is uncertainty about the ability of trace contaminant sorbents to adsorb adequately in a high-flow or short bed length configurations, and to desorb adequately during short vacuum exposures. This paper describes preliminary results of a comparative experimental investigation into adsorbents for trace contaminant control. Ammonia sorbents and low temperature catalysts for CO oxidation are the foci. The data will be useful to designers of AR systems for Constellation. Plans for extended and repeated vacuum exposure of ammonia sorbents are also presented.
Technical Paper

Further Testing of an Amine-Based Pressure-Swing System for Carbon Dioxide and Humidity Control

2008-06-29
2008-01-2101
In a crewed spacecraft environment, atmospheric carbon dioxide (CO2) and moisture control are crucial. Hamilton Sundstrand has developed a stable and efficient amine-based CO2 and water vapor sorbent, SA9T, that is well suited for use in a spacecraft environment. The sorbent is efficiently packaged in pressure-swing regenerable beds that are thermally linked to improve removal efficiency and minimize vehicle thermal loads. Flows are controlled with a single spool valve. This technology has been baselined for the new Orion spacecraft, but additional data was needed on the operational characteristics of the package in a simulated spacecraft environment. One unit was tested with simulated metabolic loads in a closed chamber at Johnson Space Center during the latter part of 2006. Those test results were reported in a 2007 ICES paper.
X