Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Evaluating the Impact of Connected Vehicle Technology on Heavy-Duty Vehicle Emissions

2023-04-11
2023-01-0716
Eco-driving algorithms enabled by Vehicle to Everything (V2X) communications in Connected and Automated Vehicles (CAVs) can improve fuel economy by generating an energy-efficient velocity trajectory for vehicles to follow in real time. Southwest Research Institute (SwRI) demonstrated a 7% reduction in energy consumption for fully loaded class 8 trucks using SwRI’s eco-driving algorithms. However, the impact of these schemes on vehicle emissions is not well understood. This paper details the effort of using data from SwRI’s on-road vehicle tests to measure and evaluate how eco-driving could impact emissions. Two engine and aftertreatment configurations were evaluated: a production system that meets current NOX standards and a system with advanced aftertreatment and engine technologies designed to meet low NOX 2031+ emissions standards.
Journal Article

Impact of Hydrothermal and Chemical Aging on SCR Storage Characteristics and NOx Reduction Performance in an Ultra-Low NOx System

2023-04-11
2023-01-0360
This work is a part of medium-duty Low NOx technology development project with a focus on evaluating a combination of engine and advanced aftertreatment for 0.02 g/bhp-hr NOx regulation proposed by CARB (California air resource board). In this project, a control oriented chemical kinetics model of SCR (Selective catalytic reduction) was used in the aftertreatment controller that is susceptible to performance degradation due to hydrothermal and chemical aging. This paper focuses on modeling the NOx conversion and NH3 storage characteristics using a controls oriented SCR plant model which is further used for a model-based urea dosing scheme. A set of steady state reactor tests were used to calibrate the SCR performance at degreened, hydrothermal only and hydrothermal + chemical aging conditions and also to determine inhibition factors related to aging. The resultant model is capable of simulating SCR performance deterioration such as a reduction in NOx conversion and NH3 storage.
Journal Article

Impact of Second NH3 Storage Site on SCR NO x Conversion in an Ultra-Low NO x Aftertreatment System

2023-04-11
2023-01-0367
Typical two-site storage-based SCR plant models in literature consider NH3 stored in the first site to participate in NH3 storage, NOx conversion and second site to only participate in NH3 storage passively. This paper focuses on quantifying the impact of stored NH3 in the second site on the overall NOx conversion for an ultra-low NOx system due to intra site NH3 mass transfer. Accounting for this intra site mass transfer leads to better prediction of SCR out NH3 thus ensuring compliance with NH3 coverage targets and improved dosing characteristics of the controller that is critical to achieving ultra-low NOx standard. The stored NH3 in the second site undergoes mass transfer to the first site during temperature ramps encountered in a transient cycle that leads to increased NOx conversion in conditions where the dosing is switched off. The resultant NH3 coverage fraction prediction is critical in dosing control of SCR.
Technical Paper

Benefits of a Dual HP and LP EGR Circuit on a Turbocharged Direct Injection Gasoline Engine

2022-03-29
2022-01-0429
Internal combustion engines (ICE) will be a part of personal transportation for the foreseeable future. One recent trend for engines has been downsizing which enables the engine to be run more efficiently over regulatory drive cycles. Due to downsizing, engine power density has increased which leads to problems with engine knock. Therefore, there is an increasing need to find a means to reduce the knock propensity of downsized engines. One of the ways of reducing knock propensity is by introducing Exhaust Gas Recirculation (EGR) into the combustion chamber, however, volumetric efficiency also reduces with EGR which places challenges on the boosting system. The individual benefits of high-pressure (HP-EGR) and low-pressure (LP-EGR) loop EGR system to assist the boosting system of a 2.0 L Gasoline Direct Injection (GDI) production engine are explored in this paper.
Technical Paper

Estimation of Intake Oxygen Mass Fraction for Transient Control of EGR Engines

2018-04-03
2018-01-0868
Cooled Exhaust Gas Recirculation (EGR) technology provides significant benefits such as better cycle efficiency, knock tolerance and lower NOx/PM emissions. However, EGR dilution also poses challenges in terms of combustion stability, power density and control. Conventional control schemes for EGR engines rely on a differential pressure sensor combined with an orifice flow model to estimate EGR flow rate. While EGR rate is an important quantity, intake O2 mass fraction may be a better indication of EGR, capturing quantity as well as “quality” of EGR. SwRI has successfully used intake O2 mass fraction as a controlled state to manage several types of EGR engines - dual loop EGR diesel engines, low pressure loop /dedicated EGR (D-EGR) gasoline engines as well as dual fuel engines. Several suppliers are currently developing intake O2 sensors but they typically suffer from limited accuracy, response time and reliability. Also, addition of a new sensor implies increased production costs.
Technical Paper

Transient Control of a Dedicated EGR Engine

2016-04-05
2016-01-0616
Southwest Research Institute (SwRI) has successfully demonstrated the cooled EGR concept via the High Efficiency Dilute Gasoline Engine (HEDGE) consortium. Dilution of intake charge provides three significant benefits - (1) Better Cycle Efficiency (2) Knock Resistance and (3) Lower NOx/PM Emissions. But EGR dilution also poses challenges in terms of combustion stability, condensation and power density. The Dedicated EGR (D-EGR) concept brings back some of the stability lost due to EGR dilution by introducing reformates such as CO and H2 into the intake charge. Control of air, EGR, fuel, and ignition remains a challenge to realizing the aforementioned benefits without sacrificing performance and drivability. This paper addresses the DEGR solution from a controls standpoint. SwRI has been developing a unified framework for controlling a generic combustion engine (gasoline, diesel, dual-fuel natural gas etc.).
Technical Paper

Demonstration of a Novel, Off Road, Diesel Combustion Concept

2016-04-05
2016-01-0728
There are numerous off-road diesel engine applications. In some applications there is more focus on metrics such as initial cost, packaging and transient response and less emphasis on fuel economy. In this paper a combustion concept is presented that may be well suited to these applications. The novel combustion concept operates in two distinct operation modes: lean operation at light engine loads and stoichiometric operation at intermediate and high engine loads. One advantage to the two mode approach is the ability to simplify the aftertreatment and reduce cost. The simplified aftertreatment system utilizes a non-catalyzed diesel particulate filter (DPF) and a relatively small lean NOx trap (LNT). Under stoichiometric operation the LNT has the ability to act as a three way catalyst (TWC) for excellent control of hydrocarbons (HC), carbon monoxide (CO) and nitrogen oxides (NOx).
Technical Paper

A Test Method for Evaluating Feasibility of Lean Nitrous Oxide Traps

2011-01-19
2011-26-0030
The Lean NOx Trap (LNT) is a technology that could be used to reduce oxides of nitrogen from heavy-duty diesel engines to meet emissions standards (US 2010 and EURO 4/5/6). This paper describes a case-study for evaluating the feasibility of an LNT. LNTs suffer from sulfur poisoning and thermal aging limitations. Catalyst formulations allow reversal of sulfur poisoning through desulfation procedures. A case study was performed using a 7-liter diesel engine equipped with VGT, common rail fuel injection system, cooled EGR, oxidation catalyst and DPF. The LNT was positioned after the particulate filter. Gaseous raw emissions were measured from engine and various stages of aftertreatment. A Fourier Transform Infrared (FTIR) analyzer was used to characterize Ammonia and SO₂. Temperatures were measured in the substrate. Fast response NOx sensor allowed for continuous monitoring of the NOx in the LNT. A wide-range O₂ sensor was also utilized to measure equivalence ratio.
Technical Paper

Feasibility Investigation of a High-Efficiency NOx Aftertreatment System for Diesel Engines

2007-10-29
2007-01-3983
A high-efficiency NOx aftertreatment system has been proposed for use in Diesel engines. This system includes a Lean NOx Trap (LNT) in series with a Selective Catalyst Reduction (SCR) catalyst [6], [7], [8], and is hereinafter referred to as the LNT-SCR system. The combined LNT-SCR system can potentially overcome many of the drawbacks of LNT-only and SCR-only operation and achieve very high NOx conversion efficiency without external addition of ammonia (or urea). A laboratory test procedure was developed to validate the LNT-SCR system concept, and a series of tests was conducted to test the NOx conversion of this system under various conditions. A Synthetic Gas Reactor (SGR) system was modified to accommodate LNT and SCR catalyst cores and synthetic gas mixtures were used to simulate rich-lean regeneration cycles from a diesel engine. A Fourier Transform Infrared (FTIR) system was used to measure gas compositions within the LNT-SCR system.
X