Refine Your Search

Topic

Search Results

Technical Paper

CFD Investigation of the Effects of Gas’ Methane Number on the Performance of a Heavy-Duty Natural-Gas Spark-Ignition Engine

2019-09-09
2019-24-0008
Natural gas (NG) is an alternative fuel for spark-ignition engines. In addition to its cleaner combustion, recent breakthroughs in drilling technologies increased its availability and lowered its cost. NG consists of mostly methane, but it also contains heavier hydrocarbons and inert diluents, the levels of which vary substantially with geographical source, time of the year and treatments applied during production or transportation. To investigate the effects of NG composition on engine performance and emissions, a 3D CFD model of a heavy-duty diesel engine retrofitted to NG spark ignition simulated lean-combustion engine operation at low speed and medium load conditions. The work investigated three NG blends with similar lower heating value (i.e., similar energy density) but different Methane Number (MN). The results indicated that a lower MN increased flame propagation speed and thus increased in-cylinder pressure and indicated mean effective pressure.
Technical Paper

Investigation of On-Road Crosswinds on Interstate Tractor-Trailer Aerodynamic Efficiency

2014-04-01
2014-01-0608
Heavy duty tractor-trailers under freeway operations consume about 65% of the total engine shaft energy to overcome aerodynamic drag force. Vehicles are exposed to on-road crosswinds which cause change in pressure distribution with a relative wind speed and yaw angle. The objective of this study was to analyze the drag losses as a function of on-road wind conditions, on-road vehicle position and trajectory. Using coefficient of drag (CD) data available from a study conducted at NASA Ames, Geographical Information Systems model, time-varying weather data and road data, a generic model was built to identify the yaw angles and the relative magnitude of wind speed on a given route over a given time period. A region-based analysis was conducted for a study on interstate trucking operation by employing I-79 running through West Virginia as a case study by initiating a run starting at 12am, 03/03/2012 out to 12am, 03/05/2012.
Journal Article

Finite Element Analysis of Composite Over-wrapped Pressure Vessels for Hydrogen Storage

2013-09-24
2013-01-2477
This paper presents 3D finite element analysis performed for a composite cylindrical tank made of 6061-aluminum liner overwrapped with carbon fibers subjected to a burst internal pressure of 1610 bars. As the service pressure expected in these tanks is 700 bars, a factor of safety of 2.3 is kept the same for all designs. The optimal design configuration of such high pressure storage tanks includes an inner liner used as a gas permeation barrier, geometrically optimized domes, inlet/outlet valves with minimum stress concentrations, and directionally tailored exterior reinforcement for high strength and stiffness. Filament winding of pressure vessels made of fiber composite materials is the most efficient manufacturing method for such high pressure hydrogen storage tanks. The complexity of the filament winding process in the dome region is characterized by continually changing the fiber orientation angle and the local thickness of the wall.
Technical Paper

Innovative Dense Lightweight Design for On-Board Hydrogen Storage Tank

2012-09-24
2012-01-2061
The hydrogen economy envisioned in the future requires safe and efficient means of storing hydrogen fuel for either use on-board vehicles, delivery on mobile transportation systems or high-volume storage in stationary systems. The main emphasis of this work is placed on the high -pressure storing of gaseous hydrogen on-board vehicles. As a result of its very low density, hydrogen gas has to be stored under very high pressure, ranging from 350 to 700 bars for current systems, in order to achieve practical levels of energy density in terms of the amount of energy that can be stored in a tank of a given volume. This paper presents 3D finite element analysis performed for a composite cylindrical tank made of 6061-aluminum liner overwrapped with carbon fibers subjected to a burst internal pressure of 1610 bars. As the service pressure expected in these tanks is 700 bars, a factor of safety of 2.3 is kept the same for all designs.
Technical Paper

Chassis Dynamometer Emissions Characterization of a Urea-SCR Transit Bus

2012-06-01
2011-01-2469
West Virginia University characterized the emissions and fuel economy performance of a 30-foot 2010 transit bus equipped with urea selective catalytic reduction (u-SCR) exhaust aftertreatment. The bus was exercised over speed-time driving schedules representative of both urban and on-highway activity using a chassis dynamometer while the exhaust was routed to a full-scale dilution tunnel with research grade emissions analyzers. The Paris speed-time driving schedule was used to represent slow urban transit bus activity while the Cruise driving schedule was used to represent on-highway activity. Vehicle weights representative of both one-half and empty passenger loading were evaluated. Fuel economy observed during testing with the urban driving schedule was significantly lower (55%) than testing performed with the on-highway driving schedule.
Technical Paper

Innovative Design Concepts for Lightweight Floors in Heavy Trailers

2010-10-05
2010-01-2033
Currently, the chassis assembly contributes about 73 percent of the overall weight of a 14.63 m long haul trailer. This paper presents alternative design concepts for the structural floor of a van trailer utilizing sandwich panels with various material and geometric characteristics of the core layer in order to reduce its weight significantly below that of the current design configuration. The main objective of the new designs is to achieve optimal tradeoffs between the overall structural weight and the flexural stiffness of the floor. Various preliminary design concepts of the core designs were compared on the basis of a single section of the core structure. Six different designs were analyzed by weight, maximum displacement and maximum stress under bending and torsion loads. Each concept was kept uniform by length, thickness, loading and boundary conditions. Each design concept was examined through testing of scaled model for floor assemblies.
Technical Paper

Performance Evaluation of Metal Matrix Composites Bolted Joints

2010-10-05
2010-01-2036
Recent advances in Metal Matrix Composites have made them ready for transition to large-volume production and commercialization. Such new materials seem to allow the fabrication of higher quality parts at less than 50 percent of the weight as compared to steel. The increasing requirements of weight savings and extended durability motivated the potential application of MMC technology into the heavy vehicle market. However, significant technical barriers such as joining are likely to hinder the broad applications of MMC materials in heavy vehicles. The focus of this paper is to examine the feasibility of manufacturing and the behavior of bolted joint connections made from aluminum matrix reinforced with Silicon Carbide (SiC) particles. Two reinforcement ratios: 20% and 45% were considered in this study. The first part of the paper concentrates on experimental evaluation of bolted MMC joints.
Technical Paper

Development and Testing of a Tag-based Backup Warning System for Construction Equipment

2007-10-30
2007-01-4233
Incidents in which a piece of construction equipment backed into a worker resulted in an average of 17 deaths per year at road construction sites and 15 deaths per year at building construction sites from 1997 through 2001. This trend continues and researchers at the National Institute for Occupational Safety and Health are evaluating methods to decrease these incidents. A new technology based on the detection of electronic identification tags worn by workers has been developed and evaluated at a road construction site. The tag-based proximity warning system consists of a magnetic field generator and communications system that mounts on the back of a piece of construction equipment such as a dump truck, road grader, or loader. Workers at a construction site wear a small tag that detects the magnetic marker field.
Technical Paper

A Comparison of Crash Patterns in Heavy Trucks with and Without Collision Warning System Technology

2004-10-26
2004-01-2651
Collision warning systems (CWS) are a relatively new technology to reduce or mitigate motor vehicle rear-end and side impact collisions. This study compared available police-reported crash experiences of 6,143 CWS-equipped heavy trucks with the experiences of 383,058 heavy trucks without CWS. Data were from the Motor Carrier Management Information System (2000-2002). Results suggest that CWS-equipped trucks had a significantly lower proportion of crashes involving other moving vehicles and a significantly lower proportion of multiple vehicle crashes compared to trucks without CWS, (40% vs. 49%, p<0.0001; 62% vs. 67%, p<0.004 respectively). These changes are the first crash-data based evidence that supports the design effect of CWS. However, more studies are needed to determine the specific impacts of CWS on heavy truck crashes.
Technical Paper

Digitization of Farm Tractors and Body Models for the Evaluation of Farm Tractors

2004-06-15
2004-01-2170
Feature-envelope technique is a method that describes the spatial location and orientation of areas or landmarks of interest with respect to a well-defined, easily duplicated coordinate system. This technique has been tested in a NIOSH study in guiding tractor designers in their placement of tractor control components in order to best accommodate the user population. NIOSH recently measured the human body dimensions of 100 West Virginia farm workers, including whole body surface scans, to examine body size accommodation issues associated with safe farm tractor operation and rollover protective structures. Multivariate anthropometric models were derived from this population based on measurements related to the workstation. The Euclidian distance of each subject for each model was computed, and those that scored the closest were identified as “nearest neighbors.”
Technical Paper

Effect on Emissions of Multiple Driving Test Schedules Performed on Two Heavy-Duty Vehicles

2000-10-16
2000-01-2818
Chassis based emissions characterization of heavy-duty vehicles has advanced over the last decade, but the understanding of the effect of test schedule on measured emissions is still poor. However, this is an important issue because the test schedule should closely mimic actual vehicle operation or vocation. A wide variety of test schedules was reviewed and these cycles were classified as cycles or routes and as geometric or realistic. With support from the U.S. Department of Energy Office of Transportation Technologies (DOE/OTT), a GMC box truck with a Caterpillar 3116 engine and a Peterbilt over the road tractor-trailer with a Caterpillar 3406 engine were exercised through a large number of cycles and routes. Test weight for the GMC was 9,980 kg and for the Peterbilt was 19,050 kg. Emissions characterization was performed using a heavy-duty chassis dynamometer, with a full-scale dilution tunnel, analyzers for gaseous emissions, and filters for PM emissions.
Technical Paper

Emissions from Buses with DDC 6V92 Engines Using Synthetic Diesel Fuel

1999-05-03
1999-01-1512
Synthetic diesel fuel can be made from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, synthetic diesel fuels may also be economically competitive with California diesel fuel if produced in large volumes. Previous engine laboratory and field tests using a heavy-duty chassis dynamometer indicate that synthetic diesel fuel made using the Fischer-Tropsch (F-T) catalytic conversion process is a promising alternative fuel because it can be used in unmodified diesel engines, and can reduce exhaust emissions substantially. The objective of this study was a preliminary assessment of the emissions from older model transit operated on Mossgas synthetic diesel fuel. The study compared emissions from transit buses operating on Federal no. 2 Diesel fuel, Mossgas synthetic diesel (MGSD), and a 50/50 blend of the two fuels.
Technical Paper

Application of the New City-Suburban Heavy Vehicle Route (CSHVR) to Truck Emissions Characterization

1999-05-03
1999-01-1467
Speed-time and video data were logged for tractor-trailers performing local deliveries in Akron, OH. and Richmond, VA. in order to develop an emissions test schedule that represented real truck use. The data bank developed using these logging techniques was used to create a Yard cycle, a Freeway cycle and a City-Suburban cycle by the concatenation of microtrips. The City-Suburban driving cycle was converted to a driving route, in which the truck under test would perform at maximum acceleration during certain portions of the test schedule. This new route was used to characterize the emissions of a 1982 Ford tractor with a Cummins 14 liter, 350 hp engine and a 1998 International tractor with a Cummins 14 liter, 435 hp engine. Emissions levels were found to be repeatable with one driver and the driver-to-driver variation of NOx was under 4%, although the driver-to-driver variations of CO and PM were higher.
Technical Paper

Natural Gas and Diesel Transit Bus Emissions: Review and Recent Data

1997-11-17
973203
Natural Gas engines are viewed as an alternative to diesel power in the quest to reduce heavy duty vehicle emissions in polluted urban areas. In particular, it is acknowledged that natural gas has the potential to reduce the inventory of particulate matter, and this has encouraged the use of natural gas engines in transit bus applications. Extensive data on natural gas and diesel bus emissions have been gathered using two Transportable Heavy Duty Vehicle Emissions Testing Laboratories, that employ chassis dynamometers to simulate bus inertia and road load. Most of the natural gas buses tested prior to 1997 were powered by Cummins L-10 engines, which were lean-burn and employed a mechanical mixer for fuel introduction. The Central Business District (CBD) cycle was used as the test schedule.
Technical Paper

An Approach to Simulate Chassis Dynamometer Test Cycles with Engine Dynamometer Test Cycles for Heavy-Duty Urban Buses

1996-10-01
962196
A mathematical model has been developed to transfer Chassis Dynamometer (CD) test cycles for heavy duty vehicles to the equivalent Engine Dynamometer (ED) test cycles. The model assumed a generalized drivetrain layout, and a variable drive line efficiency. An interactive computer code was written to represent the mathematical model for different drivetrain systems. Several CD test cycles were used to obtain equivalent ED test cycles for a sample based upon an urban bus equipped with an automatic transmission. Results showed the possibility of simulating CD test cycles with equivalent ED test cycles for heavy-duty urban buses under certain assumptions.
Technical Paper

Speciation of Heavy Duty Diesel Exhaust Emissions under Steady State Operating Conditions

1996-10-01
962159
This paper presents results from a study on speciation of the emission profiles and on the ozone forming potential of heavy-duty diesel exhaust under steady state engine operation. Very limited attempts have been made at determining the ozone forming potential of heavy duty diesel exhaust emissions. In this study a proportional sample of the dilute exhaust was drawn from a CFV-CVS system using a temperature controlled sampling line. The particulate matter was collected on a 70 mm Teflon coated glass fiber filter (TX40HI20WW), the semi-volatiles on XAD-2 copolymer resin and volatiles in Tedlar bags. The samples were analyzed by gas chromatography after conditioning and chemical extractions. The initial phase of the study was directed towards developing techniques and establishing protocols to determine the ozone forming potential of heavy-duty diesel exhaust. A pre-chamber naturally aspirated engine was tested on steady-state modes 1, 3, 5, 7 and 8 of the ISO 8 mode cycle.
Technical Paper

Comparative Emissions from Natural Gas and Diesel Buses

1995-12-01
952746
Data has been gathered using the West Virginia University Heavy Duty Transportable Emissions Laboratories from buses operating on diesel and a variety of alternate fuels in the field. Typically, the transportable chassis dynamo meter is set up at a local transit agency and the selected buses are tested using the fuel in the vehicle at the time of the test. The dynamometer may be set up to operate indoors or outdoors depending on the space available at the site. Samples of the fuels being used at the site are collected and sent to the laboratory for analysis and this information is then sent together with emissions data to the Alternate Fuels Data Center at the National Renewable Energy Laboratory. Emissions data are acquired from buses using the Central Business District cycle reported in SAE Standard J1376; this cycle has 14 ramps with 20 mph (32.2 km/h) peaks, separated by idle periods.
Technical Paper

Heavy Duty Testing Cycles: Survey and Comparison

1994-11-01
942263
The need to assess the effect of exhaust gas emissions from heavy duty vehicles (buses and trucks) on emission inventories is urgent. Exhaust gas emissions measured during the fuel economy measurement test procedures that are used in different countries sometimes do not represent the in-use vehicle emissions. Since both local and imported vehicles are running on the roads, it is thought that studying the testing cycles of the major vehicle manufacturer countries is worthy. Standard vehicle testing cycles on chassis dynamometer from the United States, Canada, European Community Market, and Japan1 are considered in this study. Each of the tested cycles is categorized as either actual or synthesized cycle and its representativness of the observed driving patterns is investigated. A total of fourteen parameters are chosen to characterize any given driving cycle and the cycles under investigation were compared using these parameters.
Technical Paper

Sampling Strategies for Characterization of the Reactive Components of Heavy Duty Diesel Exhaust Emissions

1994-11-01
942262
Techniques have been developed to sample and speciate dilute heavy duty diesel exhaust to determine the specific reactivities and the ozone forming potential. While the Auto/Oil Air Quality Improvement Research Program (AQIRP) has conducted a comprehensive investigation to develop data on potential improvements in vehicle emissions and air quality from reformulated gasoline and various other alternative fuels. However, the development of sampling protocols and speciation of heavy duty diesel exhaust is still in its infancy [1, 2, 3, 4, 5 and 6]. This paper focuses on the first phase of the heavy duty diesel speciation program, that involves the development of a unique set of sampling protocols for the gas phase, semi-volatile and particulate matter from the exhaust of engines operating on different types of diesel fuel. Effects of sampling trains, sampling temperatures, semi-volatile adsorbents and driving cycles are being investigated.
Technical Paper

Chassis Test Cycles for Assessing Emissions from Heavy Duty Trucks

1994-10-01
941946
Recent interest in the effect of engine life on vehicle emissions, particularly those from alternately fueled engines, has led to a need to test heavy duty trucks in the field over their lifetime. West Virginia University has constructed two transportable laboratories capable of measuring emissions as a vehicle is driven through a transient test schedule. Although the central business district (CBD) cycle is well accepted for bus testing, no time-based schedule suited to the testing of class 8 trucks with unsynchronized transmissions is available. The Federal Test Procedure for certifying heavy duty engines can be translated with some difficulty into a flat road chassis cycle although original data clearly incorporated unpredictable braking and inclines. Two methods were attempted for this purpose, but only an energy conservation method proved practical.
X