Refine Your Search

Topic

Search Results

Technical Paper

Investigation of On-Road Crosswinds on Interstate Tractor-Trailer Aerodynamic Efficiency

2014-04-01
2014-01-0608
Heavy duty tractor-trailers under freeway operations consume about 65% of the total engine shaft energy to overcome aerodynamic drag force. Vehicles are exposed to on-road crosswinds which cause change in pressure distribution with a relative wind speed and yaw angle. The objective of this study was to analyze the drag losses as a function of on-road wind conditions, on-road vehicle position and trajectory. Using coefficient of drag (CD) data available from a study conducted at NASA Ames, Geographical Information Systems model, time-varying weather data and road data, a generic model was built to identify the yaw angles and the relative magnitude of wind speed on a given route over a given time period. A region-based analysis was conducted for a study on interstate trucking operation by employing I-79 running through West Virginia as a case study by initiating a run starting at 12am, 03/03/2012 out to 12am, 03/05/2012.
Technical Paper

Methods to Assess Jolting and Jarring Events: A Surface Mining Case Study to Evaluate the Jolt-Duration Method

2009-10-06
2009-01-2830
When operating a piece of heavy equipment, the equipment operator is exposed to Whole Body Vibration (WBV), with peaks in the acceleration called jolting and jarring. Various published consensus standards exist to analyze overall WBV, but a consensus standard does not exist for describing, detecting, and categorizing the jolting and jarring peaks. During previous research into methods of measuring jolting and jarring, a Root Mean Square (RMS) method was implemented and deployed in jolting and jarring event meters called Shox Boxes (invented by the National Institute for Occupational Safety and Health, NIOSH). The RMS assessment was difficult for end users of the Shox Boxes to utilize for describing and categorizing the peaks. This paper offers a hypothetical standard, the Jolt-Duration (JD) method, based on the simple amplitude and duration of the peaks, as well as the time between peaks.
Technical Paper

Finite Element Analysis for the Interface of a Respirator and the Human Face -A Pilot Study

2009-06-09
2009-01-2271
Comfort assessment of respirator fit plays an important role in the respirator design process and standard development. To reduce the cost and design time of respirators, the design, fit, and evaluation process can be performed in a virtual environment. Literature shows that respirator-induced discomfort relates to stress, area, and region of the face covered. In this work, we investigate the relationship between the strap tensions and the stress and deformation distribution on the interface between the respirator and the headform. This is the first step towards a comprehensive understanding of the contribution of contact stress to the mathematical comfort fit model. The 3D digital models for respirators and headforms have been developed based on 3D scanning point-cloud using a Cyberware® 3D digitizer. Five digital headform models have been generated: small, medium, large, long and short.
Technical Paper

Digital Human Modeling Goals and Strategic Plans

2008-06-17
2008-01-1933
Digital human modeling (DHM) progress worldwide will be much faster and cohesive if the diverse community now developing simulations has a global blueprint for DHM, and is able to work together efficiently. DHM developers and users can save time by building on each other's work. This paper highlights a panel discussion on DHM goals and strategic plans for the next decade to begin formulating the international blueprint. Four subjects are chosen as the starting points: (1) moving DHM into the public safety and internet arenas, (2) role of DHM in computer assisted surgery and automotive safety, (3) DHM in defense applications, and (4) DHM to improve workplace ergonomics.
Technical Paper

A New Approach to Developing Digital 3-D Headforms

2008-06-17
2008-01-1878
Facial measurements were collected during the 2003 National Institute for Occupational Safety and Health (NIOSH) survey of 3,997 respirator users. In addition to traditional measuring techniques, 1013 subjects were scanned with a Cyberware 3-D Rapid Digitizer. Ten facial dimensions relevant to respirator fit were chosen for defining a principal component analysis (PCA) model which divides the user population into five face-size categories. Mean facial dimensions were then computed as a goal for a representative headform for each size category and used to identify 5 scans in each category. An average of the five scanned subjects was used to develop a single standard headform for each face-size category. Four digital 3-D models were developed: small, medium, large, and long. The new headforms include facial features not found on current standard headforms.
Technical Paper

Digitization of Farm Tractors and Body Models for the Evaluation of Farm Tractors

2004-06-15
2004-01-2170
Feature-envelope technique is a method that describes the spatial location and orientation of areas or landmarks of interest with respect to a well-defined, easily duplicated coordinate system. This technique has been tested in a NIOSH study in guiding tractor designers in their placement of tractor control components in order to best accommodate the user population. NIOSH recently measured the human body dimensions of 100 West Virginia farm workers, including whole body surface scans, to examine body size accommodation issues associated with safe farm tractor operation and rollover protective structures. Multivariate anthropometric models were derived from this population based on measurements related to the workstation. The Euclidian distance of each subject for each model was computed, and those that scored the closest were identified as “nearest neighbors.”
Technical Paper

Misfire, Knock and NOx Mapping of a Laser Spark Ignited Single Cylinder Lean Burn Natural Gas Engine

2004-06-08
2004-01-1853
Evermore demanding market and legislative pressures require stationary lean burn natural gas engines to operate at higher efficiencies and reduced levels of emissions. Higher in-cylinder pressures and leaner air/fuel ratios are required in order to meet these demands. The performance and durability of spark plug ignition systems suffer as a result of the increase in spark energy required to maintain suitable engine operation under these conditions. Advancing the state of the art of ignition systems for these engines is critical to meeting increased performance requirements. Laser-spark ignition has shown potential to improve engine performance and ignition system durability to levels required meet or exceed projected requirements. This paper discusses testing which extends previous efforts [1] to include constant fueling knock, misfire, thermal efficiency, and NOx emissions mapping of a single cylinder lean burn natural gas engine.
Technical Paper

Mutagenic Potential of Particulate Matter from Diesel Engine Operation on Fischer-Tropsch Fuel as a Function of Engine Operating Conditions and Particle Size

2002-05-06
2002-01-1699
Further growth of diesel engines in the light-duty and heavy-duty vehicular market is closely linked to the potential health risks of diesel exhaust. The California Air Resources Board and the Office of Environmental Health Hazard Assessment have identified diesel exhaust as a toxic air contaminant. The International Agency for Research on Cancer concluded that diesel particulate is a probable human carcinogen [1]. Cleaner burning liquid fuels, such as those derived from natural gas via the Fischer-Tropsch (FT) process, offer a potentially economically viable alternative to standard diesel fuel while providing reduced particulate emissions. Further understanding of FT operation may be realized by investigating the differences in toxicity and potential health effects between particulate matter(PM) derived from FT fuel and that derived from standard Federal diesel No. 2 (DF).
Technical Paper

Knock Prediction in Reciprocating Gas-Engines Using Detailed Chemical Kinetics

2001-03-05
2001-01-1012
Two and three-dimensional test cases were simulated using a detailed kinetic mechanism for di-methyl ether to represent methane combustion. A piston-bowl assembly for the compression and expansion strokes with combustion has been simulated at 1500 RPM. A fine grid was used for the 2-D simulations and a rather coarse grid was used for the 3-D calculations together with a k-ε subgrid-scale turbulence model and a partially stirred reactor model with three time scales. Ignition was simulated artificially by increasing the temperature at one point inside the cylinder. The results of these simulations were compared with experimental results. The simulation involved an engine with a homogeneous charge of methane as fuel. Results indicate that pressure fluctuations were captured some time after the ignition started, which indicates knock conditions.
Technical Paper

Identifying Less Stressful Work Methods: Computer-aided Simulation vs. Human Subject Study

2000-06-06
2000-01-2163
Engineering analyses of work methods can help identify approaches to reduce the risk of occupational injuries; computer-aided simulation technology is effective in terms of time and cost for evaluating multiple work methods. This paper analyzed scaffolding, a common activity in construction with high frequency of overexertion injuries, through a computer simulation model (3DSSPP) to identify less stressful work strategies. A laboratory study was also performed to verify the appropriateness of using the model for scaffolding job analyses. Seven commonly used end-frame lifting techniques were evaluated. Computer simulations of these work techniques show that considerable biomechanical stress occurs to most of the workers at their shoulders and elbows. A symmetric front-lifting at knuckle height appears to be the less stressful work technique, as determined by computer simulation.
Technical Paper

Development of A Microwave Assisted Regeneration System for A Ceramic Diesel Particulate System

1999-10-25
1999-01-3565
Specific aspects of a study aimed at developing a microwave assisted regeneration system for diesel particulate traps are discussed. Results from thermal and microwave characteristic studies carried out in the initial phase of the study are reported. The critical parameters that need to be optimized, for achieving controlled regeneration, are microwave preheating time period, regenerative air supply, regenerative air temperature, and soot deposition. Using a 1000 W magnetron, power measurements were made to select the best waveguide configuration for optimized transmission. A six cylinder naturally aspirated, indirect injection diesel engine was retrofitted with a customized exhaust system that included a Corning EX80 (5.66″ × 6.00″) type ceramic particulate trap. An automated exhaust bypass system enabled trap loading and subsequent regeneration with a customized microwave regeneration system. The paper discusses the salient details of both on-line and off-line regeneration setups.
Technical Paper

Contribution of Soot Contaminated Oils to Wear-Part II

1999-05-03
1999-01-1519
Diesel soot interacts with the engine oil and leads to wear of engine parts. Engine oil additives play a crucial role in preventing wear by forming the anti-wear film between the wearing surfaces. The current study was aimed at investigating the interactions between engine soot and oil properties in order to develop high performance oils for diesel engines equipped with exhaust gas re-circulation (EGR). The effect of soot contaminated oil on wear of engine components was examined using a statistically designed experiment. To quantitatively analyze and simulate the extent of wear a three-body wear machine was designed and developed. The qualitative wear analysis was performed by examining the wear scars on an AISI 52100 stainless steel ball worn in the presence of oil test samples on a ball-on-flat disc setup. The three oil properties studied were base stock, dispersant level and zinc dithiophosphate level.
Technical Paper

In-Cylinder Combustion Pressure Characteristics of Fischer-Tropsch and Conventional Diesel Fuels in a Heavy Duty CI Engine

1999-05-03
1999-01-1472
The emissions reduction benefits of Fischer-Tropsch (FT) diesel fuel have been shown in several recent published studies in both engine testing and in-use vehicle testing. FT diesel fuel shows significant advantages in reducing regulated engine emissions over conventional diesel fuel primarily to: its zero sulfur specification, implying reduced particulate matter (PM) emissions, its relatively lower aromaticity, and its relatively high cetane rating. However, the actual effect of FT diesel formulation on the in-cylinder combustion characteristics of unmodified modern heavy-duty diesel engines is not well documented. As a result, a Navistar T444E (V8, 7.3 liter) engine, instrumented for in-cylinder pressure measurement, was installed on an engine dynamometer and subjected to steady-state emissions measurement using both conventional Federal low sulfur pump diesel and a natural gas-derived FT fuel.
Technical Paper

Crash Analysis Response of a Midsize Car Subjected to Side Impact

1997-02-24
970783
Crashworthiness is a measure of a vehicle's structural integrity during mechanical impact and of its ability to absorb energy and provide occupant protection in crash situations. Finite element modeling has been successfully used to simulate collision events; the present work uses these techniques to simulate the side impact of a mid-size car in order to investigate the crash characteristics of a 45 km/hr impact. Five different analyses were conducted on orthogonal and oblique impacts under varying conditions. The numerical results from the first analysis were compared with published experimental crash results, showing favorable comparisons for this numerical model prediction.
Technical Paper

Automobile Body Panel Color Measurement Test

1997-02-24
970995
It has been proposed that an automated remote color inspection of automobile body panels is possible with a reasonably precise color measurement. This paper outlines a test of a new 3D color measurement technology as applied to this task and presents the results of the first test. A camera is set up several feet away from a car body; a 3D orientation measuring system takes both 3D and color data from the car. The raw data is presented as a set of 3D graphs; the geometry-corrected data is also provided. Statistical analysis is presented to indicate system precision.
Technical Paper

Ideal Computer Analysis of a Novel Engine Concept

1996-02-01
960080
A novel engine concept, currently under study, addresses many of the problems commonly associated with conventional internal combustion engines. In its simplest form the novel engine consists of a single crankshaft operating both a piston compressor and a piston expander which are connected by a continuous flame combustion chamber. One might regard this as a Brayton piston engine which is similar to a previous engine investigated by Warren. Also, due to the use of piston cylinders as the compression and expansion devices, this engine varies little mechanically from current engine technology thus allowing for easy implementation. The main improvement from conventional engine design is that the expansion cylinder can have a larger displacement than that of the compression cylinder. This allows more power to be extracted by lowering the loss due to blowdown and this will increase the thermal efficiency.
Technical Paper

Measurement Delays and Modal Analysis for a Heavy Duty Transportable Emissions Testing Laboratory

1995-02-01
950218
Concern over atmospheric pollution has led to the development of testing procedures to evaluate the hydrocarbon, carbon dioxide, carbon monoxide and oxides of nitrogen emissions from internal combustion engines. In order to perform emissions testing on vehicles, a chassis dynamometer capable of simulating expected driving conditions must be employed. West Virginia University has developed a Heavy Duty Transportable Emissions Testing Laboratory to perform chassis testing on trucks and buses. Emissions from the vehicle are monitored and recorded over the duration of a testing schedule. Usually the vehicle emissions from the whole test are reported as mass of emissions per unit distance driven. However, there is interest in relating the instantaneous emissions to the immediate conditions at specific points in the test, and in determining the emissions for discrete segments of the test (modal analysis).
Technical Paper

A Parametric Study of Laminated Composite Shells with Environmental Effects, Using a Higher-Order FE Model

1994-03-01
940616
In this study a higher-order shear deformable, analytical model is developed to analyze composite shells with parametric modeling capabilities. The material and geometric properties and loading conditions can be varied as parameters which satisfy a set of constraints to allow the designer to achieve a sensible and computationally feasible FE model. The formulation is derived with equal emphasis on all the six strain as well as stress components at a generic point in the shell laminate. Unlike many other available models which violates the equilibrium conditions at lamina interfaces, this model satisfies the equilibrium conditions at the lamina interfaces for a certain class (angle-ply and unidirectional orthotropic) of laminates.
Technical Paper

An Elasticity Solution of Angle-Ply Laminated Composite Shells Based on a Higher-Order FE Analysis

1994-03-01
940617
In the case of advanced light weight material applications, the design of such components, in many cases, are based on applied surface tractions These surface loads can be caused by various means. When wind effects are present these tractions can be due to pressure, suction or drag. In the case of underwater applications, hydrostatic pressure and friction caused by moving against water current needs to be considered in the design. These are some of the traction load applications, a design engineer has to deal with in his advanced material applications. In contrast to the conventional materials, the modern structures made of highly directional dependent material properties, respond the applied loads and environment in an unpredicted way, so that, a detail analysis and design is always necessary. Hence in the present study a higher-order shear deformation formulation is developed to calculate the distribution of stresses accurately in angle-ply laminated shells of revolution.
Technical Paper

Engineering Modeling and Synthesis of a Rand Cam Engine Through CAD Parametric Techniques

1993-03-01
930061
In this paper an approach is presented for the system parameterization and synthesis of a Rand-Cam® Engine configuration based on an axial-cylindrical cam driven mechanism. This engine consists of a stationary axial-cylindrical cam on which axially moving pistons (vanes) sweep around the cam as they are driven by the rotor, providing the volume displacement as the rotor delivers the rotary output torque directly to the shaft. It has been documented that this engine configuration has some unique features that make it particularly suitable for high power to weight ratio applications. The modeling strategy makes use of higher order curve and surface modeling techniques and object modeling approaches based on profile extruding, blending operations and constructive solid geometry. Some of the resulting models are further used for finite element engineering analysis through a programmatic logic built into the parameterized general model.
X