Refine Your Search

Topic

Author

Search Results

Technical Paper

A Drag-Reduction Prediction Model for Truck Platoons

2024-04-09
2024-01-2548
Truck platooning is an emerging technology that exploits the drag reduction experienced by bluff bodies moving together in close longitudinal proximity. The drag-reduction phenomenon is produced via two mechanisms: wake-effect drag reduction from leading vehicles, whereby a following vehicle operates in a region of lower apparent wind speed, thus reducing its drag; and base-drag reduction from following vehicles, whereby the high-pressure field forward of a closely-following vehicle will increase the base pressure of a leading vehicle, thus reducing its drag. This paper presents a physics-guided empirical model for calculating the drag-reduction benefits from truck platooning. The model provides a general framework from which the drag reduction of any vehicle in a heterogeneous truck platoon can be calculated, based on its isolated-vehicle drag-coefficient performance and limited geometric considerations.
Technical Paper

Wind-Load and Surface-Pressure Measurements of the Aerodynamic Interactions of a Passenger Vehicle with Adjacent-Lane Vehicles

2024-04-09
2024-01-2549
The mutual aerodynamic influence of road vehicles in close proximity is known to alter significantly the drag performance of the vehicles. This paper presents an extended analysis from a study of two open-access road-vehicle shapes (a DrivAer Notchback model and an AeroSUV Estateback model) in close lateral proximity with each other, or with other vehicle shapes. Wind-tunnel measurements were conducted for a yaw-angle range of ±10°, for lateral distances representing 75%, 100%, and 125% of a typical highway lane spacing, and for longitudinal distances up to 2 vehicle lengths forward and back. The results of a previous analysis of the data, which examined aerodynamic force measurements only, showed changes in drag coefficient of ±20% or more depending on the relative locations and wind conditions. In this paper, the force-coefficient results reexamined, and surface-pressure measurements are introduced to investigate the sources of the performance changes.
Technical Paper

Ice Crystal Environment - Modular Axial Compressor Rig: Comparisons of Ice Accretion for 1 and 2 Stages of Compression

2023-06-15
2023-01-1397
In 2021 the Federal Aviation Administration in collaboration with the National Research Council of Canada performed research on altitude ice crystal icing of aircraft engines using the modular compressor rig, ICE-MACR, in an altitude wind tunnel. The aim of the research campaign was to address research needs related to ice crystal icing of aircraft engines outlined in FAA publication Engine Ice Crystal Icing Technology Plan with Research Needs. This paper reports the findings on ice accretion from a configuration of ICE-MACR with two compression stages. Inherent in two-stage operation is not just additional fracturing and heating by the second stage but also higher axial velocity and potentially greater centrifuging of particles. These factors influence the accretion behavior in the test article compared to single stage accretion.
Technical Paper

Aluminum Sample Characterization on the NRC AIWT Ice Adhesion Spin Rig

2023-06-15
2023-01-1417
This paper presents the adhesion strength of ice on sanded and machine-finished aluminum test coupons as measured using the National Research Council of Canada (NRC) Altitude Icing Wind Tunnel (AIWT) spin rig. This rig is used to evaluate commercial and internally-developed coatings for low-adhesion properties, and the performance of ice on aluminum is required as a baseline to compare the coatings against. The tests are performed over a range of aerodynamic and icing cloud conditions, including variations in static air temperature and exposure time (and therefore accumulated ice mass). The data analysis includes an evaluation of the uncertainty in the results based on the measured ice mass repeatability and the measured shear stress repeatability.
Technical Paper

Development of an Altitude Evaporation Model for Icing Tunnel Control

2023-06-15
2023-01-1425
In 2017 the National Research Council of Canada developed an evaporation model for controlling engine icing tunnels in real time. The model included simplifications to allow it to update the control system once per second, including the assumption of sea level pressure in some calculations. Recently the engine icing system was required in an altitude facility requiring operation down to static temperatures of -40°C, and up to an altitude of 9.1 km (30 kft) or 30 kPa. To accommodate the larger temperature and pressure range the model was modified by removing the assumption of sea level operation and expanding the temperature range. In addition, due to the higher concentration of water vapor that can be held by the atmosphere at lower pressures, the significance of the effect of humidity on the air properties and the effect on the model was investigated.
Technical Paper

Design, Characterization and Initial Testing of a Vertical Stabilizer Common Research Model for Aircraft Ground Icing Testing

2023-06-15
2023-01-1439
Under contract to Transport Canada (TC) and with joint funding support from the Federal Aviation Administration (FAA), a vertical stabilizer common research model (VS-CRM) has been designed and built by the National Research Council of Canada (NRC). This model is a realistic, scaled representation of modern vertical stabilizer designs without being specific to a particular aircraft. The model was installed and tested in the NRC 3 m × 6 m Icing Wind Tunnel in late 2021/early 2022. Testing was led by APS Aviation Inc., with support from NRC and NASA, in order to observe the anti-icing fluids flow-off behavior with and without freezing or frozen precipitation during simulated take-off velocity profiles. The model dry-air aerodynamic properties were characterized using flow visualization tufts and boundary layer rakes. Using this data, a target baseline configuration was selected with a yaw angle equal to 0° and rudder deflection angle equal to -10°.
Technical Paper

Comparison of Freeze-Out versus Grind-Out Ice Crystals for Generating Ice Accretion Using the ICE-MACR

2023-06-15
2023-01-1418
Since the introduction of ice crystal icing certification requirements [1], icing facilities have played an important role in demonstrating compliance of aircraft air data probes, engine probes, and increasingly, of turbine engines. Most sea level engine icing facilities use the freezing-out of a water spray to simulate ice crystal icing conditions encountered at altitude by an aircraft in flight. However, there are notable differences in the ice particles created by freeze-out versus those observed at altitude [2, 3, 4]. Freeze-out crystals are generally spherical as compared to altitude crystals which have variable crystalline shapes. Additionally, freeze-out particles may not completely freeze in their centres, creating a combination of super-cooled liquid and ice impacting engine hardware. An alternative method for generating ice crystals in a test facility is the grinding of ice blocks or cubes to create irregular shaped crystals.
Journal Article

The Influence of Traffic Wakes on the Aerodynamic Performance of Heavy Duty Vehicles

2023-04-11
2023-01-0919
Road vehicles have been shown to experience measurable changes in aerodynamic performance when travelling in everyday safe-distance driving conditions, with a major contributor being the lower effective wind speed associated with the wakes from forward vehicles. Using a novel traffic-wake-generator system, a comprehensive test program was undertaken to examine the influence of traffic wakes on the aerodynamic performance of heavy-duty vehicles (HDVs). The experiments were conducted in a large wind tunnel with four primary variants of a high-fidelity 30%-scale tractor-trailer model. Three high-roof-tractor models (conventional North-American sleeper-cab and day-cab, and a zero-emissions-cab style) paired with a standard dry-van trailer were tested, along with a low-roof day-cab tractor paired with a flat-bed trailer.
Journal Article

Aerodynamic Drag of Road Vehicles in Close Lateral Proximity

2023-04-11
2023-01-0952
Aerodynamic interaction between vehicles on a roadway can modify the fuel use and greenhouse gas emissions of the vehicle relative to their performance under isolated, uniform-wind conditions. A comprehensive wind-tunnel study was undertaken to examine changes to the aerodynamic drag experienced by vehicles in close proximity, in adjacent lanes. Wind-load measurements were conducted for two general configurations: 15%-scale testing with light-duty-vehicle (LDV) models, and 6.7%-scale testing with a heavy-duty vehicle (HDV) model. For the LDV study, a DrivAer model was tested with a proximate AeroSUV model or an Ahmed model at lateral distances representing 75%, 100%, and 125% of a typical highway lane spacing, and for longitudinal distances up to 2 vehicle lengths forward and back. Commensurate measurements were conducted for the AeroSUV model with the proximate DrivAer or Ahmed model.
Journal Article

Simulating Traffic-wake Effects in a Wind Tunnel

2023-04-11
2023-01-0950
Road-vehicle platooning is known to reduced aerodynamic drag. Recent aerodynamic-platooning investigations have suggested that follower-vehicle drag-reduction benefits persist to large, safe inter-vehicle driving distances experienced in everyday traffic. To investigate these traffic-wake effects, a wind-tunnel wake-generator system was designed and used for aerodynamic-performance testing with light-duty-vehicle (LDV) and heavy-duty-vehicle (HDV) models. This paper summarizes the development of this Road Traffic and Turbulence System (RT2S), including the identification of typical traffic-spacing conditions, and documents initial results from its use with road-vehicle models. Analysis of highway-traffic-volume data revealed that, in an uncongested urban-highway environment, the most-likely condition is a speed of 105 km/h with an inter-vehicle spacing of about 50 m.
Technical Paper

Impact of Precipitation Drag on a Road Vehicle

2023-04-11
2023-01-0792
Road vehicles in the real world experience aerodynamic conditions that might be unappreciated and omitted in wind-tunnel experiments or in numerical simulations. Precipitation can potentially have an impact on the aerodynamics of road vehicles. An experimental study was devised to measure, in a wind tunnel, the impact of rain on the aerodynamic forces of the DrivAer research model. In this study, a rain system was commissioned to simulate natural rain in a wind-tunnel environment for full-scale rain rates between about 8 and 250 mm/hr. A 30%-scale DrivAer model was tested with and without precipitation for two primary configurations: the notch-back and estate-back variants. In addition, mirror-removal and covered-wheel-well configurations were investigated. The results demonstrate a distinct relationship between increasing rain intensities and increased drag of the model, providing evidence that road vehicles experience higher drag when travelling in precipitation conditions.
Technical Paper

Large-Scale Vehicle-Wake Characterization Using a Novel, Single-Camera Particle Tracking Technique

2021-04-06
2021-01-0940
The aerodynamic forces experienced by vehicles depend on a variety of factors including wind direction, traffic, and roadside vegetation. Such complex boundary conditions often result in unsteady flow separation and the formation of large-scale coherent structures, which, in turn, significantly influence the aerodynamics of following vehicles. To gain a deeper understanding of the unsteady behaviour of such vehicle wakes under large-scale conditions, a time-resolved field measurement technique is required. Existing methods, such as tomographic particle image velocimetry and three-dimensional particle tracking velocimetry are unfortunately quite limited at these scales. Furthermore, such techniques require complex multi-camera calibrations, hazardous lasers, and optical access from many vantage points.
Technical Paper

Analysis of the Unsteady Wakes of Heavy Trucks in Platoon Formation and Their Potential Influence on Energy Savings

2021-04-06
2021-01-0953
The authors present transient wind velocity measurements from two successive, well-documented truck platooning track-test campaigns to assess the wake-shedding behavior experienced by trucks in various platoon formations. Utilizing advanced analytics of data from fast-response (100-200-Hz) multi-hole pressure probes, this analysis examines aerodynamic flow features and their relationship to energy savings during close-following platoon formations. Applying Spectral analysis to the wind velocity signals, we identify the frequency content and vortex-shedding behavior from a forward truck trailer, which dominates the flow field encountered by the downstream trucks. The changes in dominant wake-shedding frequencies correlate with changes to the lead and follower truck fuel savings at short separation distances.
Technical Paper

Thermo-Mechanical Fatigue (TMF) Life of Ductile SiMo Cast Iron with Aluminum Addition

2021-04-06
2021-01-0281
Strain controlled thermo-mechanical fatigue (TMF) tests were conducted on a high Silicon ductile cast iron (SiMo) as the baseline material and a similar SiMo cast iron with aluminum addition (SiMoAl). The much improved fatigue life with aluminum addition is analyzed using the integrated creep-fatigue theory (ICFT) in combination with the metallurgical analysis on the tested coupons. Addition of about 3 wt.% Aluminum significantly improved TMF life of the SiMo cast iron. The results are explained by elimination of brittleness at middle temperature range, the higher flow stress, lower creep rate and higher oxidation resistance from Al addition.
Journal Article

Near-to-Far Wake Characteristics of Road Vehicles Part 2: Influence of Cross Winds and Free-Stream Turbulence

2021-04-06
2021-01-0949
Conventional assessments of the aerodynamic performance of ground vehicles have, to date, been considered in the context of a vehicle that encounters a uniform wind field in the absence of surrounding traffic. Recent vehicle-platooning studies have revealed measurable fuel savings when following other vehicles at inter-vehicle distances experienced in every-day traffic. These energy savings have been attributed in large part to the air-wakes of the leading vehicles. This set of three papers documents a study to examine the near-to-far regions of ground-vehicle wakes (one to ten vehicle lengths), in the context of their potential influence on other vehicles. Part two of this three-part paper documents the influence of the ambient winds on the development of the wake behind a vehicle.
Journal Article

New Results from the Evaluation of Drag Reduction Technologies for Light-Duty Vehicles

2021-04-06
2021-01-0943
Aerodynamic technologies for light-duty vehicles were evaluated through full-scale testing in a large low-blockage closed-circuit wind tunnel equipped with a rolling road, wheel rollers, boundary-layer suction and a system to generate road-representative turbulent flow. This work was part of a multi-year, multi-vehicle study commissioned by Transport Canada and Environment and Climate Change Canada, and carried out in cooperation with the US EPA, to support the evaluation of light-duty-vehicle greenhouse-gas-emission regulations. A 2016 paper reported drag-reduction measurements for technologies such as active grille shutters, production and custom underbody treatments, air dams, ride height control and combinations of these. This paper describes an extension to that work and addresses vehicle aerodynamics in three ways.
Journal Article

Near-to-Far Wake Characteristics of Road Vehicles Part 1: Influence of Ground Motion and Vehicle Shape

2021-04-06
2021-01-0957
Conventional assessments of the aerodynamic performance of ground vehicles have, to date, been considered in the context of a vehicle that encounters a uniform wind field in the absence of surrounding traffic. Recent vehicle-platooning studies have revealed measurable fuel savings when following other vehicles at inter-vehicle distances experienced in every-day traffic. These energy savings have been attributed in large part to the air-wakes of the leading vehicles. This set of three papers documents a study to examine the near-to-far regions of ground-vehicle wakes (one to ten vehicle lengths), in the context of their potential influence on other vehicles. Part one of this three-part paper documents principally the influence of vehicle shape on the development of its wake.
Journal Article

Track-Based Aerodynamic Testing of a Two-Truck Platoon

2021-04-06
2021-01-0941
Fuel savings from truck platooning are generally attributed to an aerodynamic drag-reduction phenomena associated with close-proximity driving. The current paper is the third in a series of papers documenting track testing of a two-truck platoon with a Cooperative Adaptive Cruise Control (CACC) system where fuel savings and aerodynamics measurements were performed simultaneously. Constant-speed road-load measurements from instrumented driveshafts and on-board wind anemometry were combined with vehicle measurements to calculate the aerodynamic drag-area of the vehicles. The drag-area results are presented for each vehicle in the two-truck platoon, and the corresponding drag-area reductions are shown for a variety of conditions: gap separation distances (9 m to 87 m), lateral offsets (up to 1.3 m), dry-van and flatbed trailers, and in the presence of surrounding traffic.
Journal Article

Impact of Mixed Traffic on the Energy Savings of a Truck Platoon

2020-04-14
2020-01-0679
A two-truck platoon based on a prototype cooperative adaptive cruise control (CACC) system was tested on a closed test track in a variety of realistic traffic and transient operating scenarios - conditions that truck platoons are likely to face on real highways. The fuel consumption for both trucks in the platoon was measured using the SAE J1321 gravimetric procedure as well as calibrated J1939 instantaneous fuel rate, serving as proxies to evaluate the impact of aerodynamic drag reduction under constant-speed conditions. These measurements demonstrate the effects of: the presence of a multiple-passenger-vehicle pattern ahead of and adjacent to the platoon, cut-in and cut-out manoeuvres by other vehicles, transient traffic, the use of mismatched platooned vehicles (van trailer mixed with flatbed trailer), and the platoon following another truck with adaptive cruise control (ACC).
Technical Paper

Validation and Instrumentation of a Small Modular Multi-Stage Axial Compressor for Ice Crystal Icing Research

2019-06-10
2019-01-1940
The National Research Council of Canada (NRC) has undergone the development of a Small Axial Compressor Rig for modelling altitude ice accretion in aircraft engines. The rig consists of two axial compressor stages measuring approximately 150mm in diameter, an extension duct to allow residence time for partial melting of ice crystals and a test piece. The axial compressor stages are intended to provide realistic engine conditioning such as fracture, pressure rise, temperature rise and centrifuging of glaciated ice crystals entering the rig. The rig was designed for use in altitude icing wind tunnels such as the NRC’s altitude icing wind tunnel (AIWT), research altitude test facility (RATFac.), and those of other organization such as NASA Glenn and Technical University of Braunshweig. Previous development work [1] provided partial validation of the aerodynamic performance of just the first compressor stage at 90% power.
X