Refine Your Search

Topic

Author

Search Results

Technical Paper

Highway Exhaust Emissions of a Natural Gas-Diesel Dual-Fuel Heavy-Duty Truck

2024-04-09
2024-01-2120
Diesel-fueled heavy-duty vehicles (HDVs) can be retrofitted with conversion kits to operate as dual-fuel vehicles in which partial diesel usage is offset by a gaseous fuel such as compressed natural gas (CNG). The main purpose of installing such a conversion kit is to reduce the operating cost of HDVs. Additionally, replacing diesel partially with a low-carbon fuel such as CNG can potentially lead to lower carbon dioxide (CO2) emissions in the tail-pipe. The main issue of CNG-diesel dual-fuel vehicles is the methane (CH4, the primary component of CNG) slip. CH4 is difficult to oxidize in the exhaust after-treatment (EAT) system and its slip may offset the advantage of lower CO2 emissions of natural gas combustion as CH4 is a strong greenhouse gas (GHG). The objective of this study is to compare the emissions of an HDV with a CNG conversion kit operating in diesel and dual-fuel mode during highway operation.
Technical Paper

Experimental and Numerical Ice Accretion Shapes on a Pitot Probe Model

2023-06-15
2023-01-1370
This paper presents experimental ice accretion measurements alongside numerical simulations, using the National Research Council Canada’s morphogenetic approach, on a pitot probe geometry at varying icing conditions. In previous publications, the morphogenetic approach for the numerical simulation of ice accretion has shown promise for pitot probe applications, potentially reducing the number of wind tunnel entries, and therefore cost, of the development cycle. An experimental campaign has been completed, providing ice shapes on a representative pitot probe model. Comparison of the experimental and numerical ice shapes indicate that the morphogenetic model is able to generate the complex ice shapes seen experimentally for real-world icing conditions on a fully 3D geometry, closely matching both ice features and total ice thicknesses.
Technical Paper

NRC’s ICE-MACR 2018-2023: What Has Been Learned So Far

2023-06-15
2023-01-1377
The Ice Crystal Environment Modular Axial Compressor Rig (ICE-MACR) was developed by the National Research Council of Canada (NRC) with support from the Federal Aviation Administration (FAA) in response to the need to understand ice crystal icing of aircraft engines at high altitudes. Icing wind tunnel tests on static hardware lack some of the real physics of turbofan compressor such as centrifuging and fracturing of particles, and melting of particles due to compression heating, heat transfer through a casing wall, as well as annular geometry effects. Since the commissioning of ICE-MACR in 2019 new insights have been gained on the physics behind ice crystal icing of turbofan engines. Additionally, the results of various test campaigns have been used to validate engine ice accretion numerical codes. This paper summarizes the key insights into ICI of turbofans gained from the ICE-MACR to date.
Technical Paper

Ice Crystal Environment - Modular Axial Compressor Rig: Comparisons of Ice Accretion for 1 and 2 Stages of Compression

2023-06-15
2023-01-1397
In 2021 the Federal Aviation Administration in collaboration with the National Research Council of Canada performed research on altitude ice crystal icing of aircraft engines using the modular compressor rig, ICE-MACR, in an altitude wind tunnel. The aim of the research campaign was to address research needs related to ice crystal icing of aircraft engines outlined in FAA publication Engine Ice Crystal Icing Technology Plan with Research Needs. This paper reports the findings on ice accretion from a configuration of ICE-MACR with two compression stages. Inherent in two-stage operation is not just additional fracturing and heating by the second stage but also higher axial velocity and potentially greater centrifuging of particles. These factors influence the accretion behavior in the test article compared to single stage accretion.
Technical Paper

Aluminum Sample Characterization on the NRC AIWT Ice Adhesion Spin Rig

2023-06-15
2023-01-1417
This paper presents the adhesion strength of ice on sanded and machine-finished aluminum test coupons as measured using the National Research Council of Canada (NRC) Altitude Icing Wind Tunnel (AIWT) spin rig. This rig is used to evaluate commercial and internally-developed coatings for low-adhesion properties, and the performance of ice on aluminum is required as a baseline to compare the coatings against. The tests are performed over a range of aerodynamic and icing cloud conditions, including variations in static air temperature and exposure time (and therefore accumulated ice mass). The data analysis includes an evaluation of the uncertainty in the results based on the measured ice mass repeatability and the measured shear stress repeatability.
Technical Paper

Development of an Altitude Evaporation Model for Icing Tunnel Control

2023-06-15
2023-01-1425
In 2017 the National Research Council of Canada developed an evaporation model for controlling engine icing tunnels in real time. The model included simplifications to allow it to update the control system once per second, including the assumption of sea level pressure in some calculations. Recently the engine icing system was required in an altitude facility requiring operation down to static temperatures of -40°C, and up to an altitude of 9.1 km (30 kft) or 30 kPa. To accommodate the larger temperature and pressure range the model was modified by removing the assumption of sea level operation and expanding the temperature range. In addition, due to the higher concentration of water vapor that can be held by the atmosphere at lower pressures, the significance of the effect of humidity on the air properties and the effect on the model was investigated.
Technical Paper

Comparability of Hot-Wire Estimates of Liquid Water Content in SLD Conditions

2023-06-15
2023-01-1423
Future compliance to FAA 14 CFR Part 25 and EASA CS-25 Appendix O conditions has required icing wind tunnels to expand their cloud simulation envelope, and demonstrate accurate calibration of liquid water content and droplet particle size distributions under these conditions. This has led to a renewed community interest in the accuracy of these calibrations, and the potential inter-facility bias due to the choice of instrumentation and processing methods. This article provides a comparison of the response of various hot-wire liquid water content instruments under Appendix C and supercooled large droplet conditions, after an independent similar analysis at other wind tunnel facilities. The instruments are being used, or are under consideration for use, by facilities collaborating in the ICE GENESIS program.
Technical Paper

Design, Characterization and Initial Testing of a Vertical Stabilizer Common Research Model for Aircraft Ground Icing Testing

2023-06-15
2023-01-1439
Under contract to Transport Canada (TC) and with joint funding support from the Federal Aviation Administration (FAA), a vertical stabilizer common research model (VS-CRM) has been designed and built by the National Research Council of Canada (NRC). This model is a realistic, scaled representation of modern vertical stabilizer designs without being specific to a particular aircraft. The model was installed and tested in the NRC 3 m × 6 m Icing Wind Tunnel in late 2021/early 2022. Testing was led by APS Aviation Inc., with support from NRC and NASA, in order to observe the anti-icing fluids flow-off behavior with and without freezing or frozen precipitation during simulated take-off velocity profiles. The model dry-air aerodynamic properties were characterized using flow visualization tufts and boundary layer rakes. Using this data, a target baseline configuration was selected with a yaw angle equal to 0° and rudder deflection angle equal to -10°.
Technical Paper

Liquid Water Content Instrumentation Study at the NRC AIWT

2023-06-15
2023-01-1424
The National Research Council Altitude Icing Wind Tunnel liquid water content calibrations have historically relied on a 2.4 mm diameter rotating cylinder for drop sizes up to 50 μm and a 6.2 mm diameter rotating cylinder for drop sizes from 50 μm to 200 μm. This study compares the facility calibration, derived from rotating cylinder measurements, to water content measurements from the Science Engineering Associates Multi-Element Probe and the National Research Council Compact Iso-Kinetic Probe over a range of airspeeds and drop sizes. The data show where the rotating cylinder measurements may start to underestimate the liquid water content (LWC), possibly due to splashing at higher airspeeds and drop sizes. The data also show that the LWC read by the Multi-Element Probe is higher than that provided by the rotating cylinders, and the Compact Iso-Kinetic Probe (CIKP) reads higher than both other methods.
Technical Paper

Comparison of Freeze-Out versus Grind-Out Ice Crystals for Generating Ice Accretion Using the ICE-MACR

2023-06-15
2023-01-1418
Since the introduction of ice crystal icing certification requirements [1], icing facilities have played an important role in demonstrating compliance of aircraft air data probes, engine probes, and increasingly, of turbine engines. Most sea level engine icing facilities use the freezing-out of a water spray to simulate ice crystal icing conditions encountered at altitude by an aircraft in flight. However, there are notable differences in the ice particles created by freeze-out versus those observed at altitude [2, 3, 4]. Freeze-out crystals are generally spherical as compared to altitude crystals which have variable crystalline shapes. Additionally, freeze-out particles may not completely freeze in their centres, creating a combination of super-cooled liquid and ice impacting engine hardware. An alternative method for generating ice crystals in a test facility is the grinding of ice blocks or cubes to create irregular shaped crystals.
Technical Paper

An Autonomous Steering Control Scheme for Articulated Heavy Vehicles Using - Model Predictive Control Technique

2023-04-11
2023-01-0658
This article presents an autonomous steering control scheme for articulated heavy vehicles (AHVs). Despite economic and environmental benefits in freight transportation, lateral stability is always a concern for AHVs in high-speed highway operations due to their multi-unit vehicle structures, and high centers of gravity (CGs). In addition, North American harsh winter weather makes the lateral stability even more challenging. AHVs often experience amplified lateral motions of trailing vehicle units in high-speed evasive maneuvers. AHVs represent a 7.5 times higher risk than passenger cars in highway operation. Human driver errors cause about 94% of traffic collisions. However, little attention has been paid to autonomous steering control of AHVs.
Technical Paper

Impact of Precipitation Drag on a Road Vehicle

2023-04-11
2023-01-0792
Road vehicles in the real world experience aerodynamic conditions that might be unappreciated and omitted in wind-tunnel experiments or in numerical simulations. Precipitation can potentially have an impact on the aerodynamics of road vehicles. An experimental study was devised to measure, in a wind tunnel, the impact of rain on the aerodynamic forces of the DrivAer research model. In this study, a rain system was commissioned to simulate natural rain in a wind-tunnel environment for full-scale rain rates between about 8 and 250 mm/hr. A 30%-scale DrivAer model was tested with and without precipitation for two primary configurations: the notch-back and estate-back variants. In addition, mirror-removal and covered-wheel-well configurations were investigated. The results demonstrate a distinct relationship between increasing rain intensities and increased drag of the model, providing evidence that road vehicles experience higher drag when travelling in precipitation conditions.
Technical Paper

A Study on the Use of Intake Flow Path Modification to Reduce Methane Slip of a Natural Gas-Diesel Dual-Fuel Engine

2022-03-29
2022-01-0467
Use of natural gas-diesel dual-fuel (NDDF) combustion in compression ignition engines is a method of reducing the net greenhouse gas (GHG) and particulate matter (PM) emissions of these engines. Compressed natural gas (NG) is injected into the intake manifold of the engine and the air-NG mixture is ignited by a direct injection of diesel in the cylinder. One of the main challenges with NDDF combustion is the methane (primary component of NG) slip at low and medium loads, which reduces the engine efficiency and offsets the advantage of lower carbon dioxide emissions of the NG combustion. In order to address this issue, an intake manifold insert is devised with the objective to alter the intake flow profile into the engine and ultimately reduce the methane slip. This is a novel strategy for an NDDF engine since modifying the in-cylinder flow profile can intensify the mixing between diesel and air-NG mixture in order to improve the NG utilization in the cylinder.
Technical Paper

Thermo-Mechanical Fatigue (TMF) Life of Ductile SiMo Cast Iron with Aluminum Addition

2021-04-06
2021-01-0281
Strain controlled thermo-mechanical fatigue (TMF) tests were conducted on a high Silicon ductile cast iron (SiMo) as the baseline material and a similar SiMo cast iron with aluminum addition (SiMoAl). The much improved fatigue life with aluminum addition is analyzed using the integrated creep-fatigue theory (ICFT) in combination with the metallurgical analysis on the tested coupons. Addition of about 3 wt.% Aluminum significantly improved TMF life of the SiMo cast iron. The results are explained by elimination of brittleness at middle temperature range, the higher flow stress, lower creep rate and higher oxidation resistance from Al addition.
Technical Paper

An Experimental Study on NOx Emissions of a Heavy-Duty Diesel Engine during Cold Start and Idling

2021-04-06
2021-01-0535
In North America, heavy-duty diesel engines for on-road use have to meet strict regulations for their emissions of nitric oxide and nitrogen dioxide (cumulatively referred to as ‘NOx’) besides other criteria pollutants. Over the next decade, regulations for NOx emissions are expected to becoming more stringent in North America. One of the major technical barriers for achieving in-use NOx emissions commensurate with the levels determined from in-laboratory test procedures required by regulations is controlling NOx emissions during cold start and engine idling. Since the exhaust gas temperature can be low during these conditions, the effectiveness of the exhaust after-treatment (EAT) system may be reduced. Under colder climate conditions like in Canada, the impact may be even more significant.
Technical Paper

Impact of Lateral Alignment for Cooling Airflow during Heavy-Truck Platooning

2021-04-06
2021-01-0231
A truck platooning system was tested using two heavy-duty tractor-trailer trucks on a closed test track to investigate the thermal control/heat rejection system sensitivity to intentional lateral offsets over a range of intervehicle spacings. Previous studies have shown the following vehicle can experience elevated temperatures and reduced airflow through the cooling package as a result of close-formation platooning. Four anemometers positioned across the grille of the following trucks as well as aligned and multiple offset positions are used to evaluate the sensitivity of the impact. Straight sections of the track are isolated for the most accurate airflow impact measurements and to be most representative of on-highway driving. An intentional lateral offset in truck platooning is considered as a controls approach to mitigate reduced cooling efficacy at close following scenarios where the highest platoon savings are achieved.
Journal Article

Near-to-Far Wake Characteristics of Road Vehicles Part 2: Influence of Cross Winds and Free-Stream Turbulence

2021-04-06
2021-01-0949
Conventional assessments of the aerodynamic performance of ground vehicles have, to date, been considered in the context of a vehicle that encounters a uniform wind field in the absence of surrounding traffic. Recent vehicle-platooning studies have revealed measurable fuel savings when following other vehicles at inter-vehicle distances experienced in every-day traffic. These energy savings have been attributed in large part to the air-wakes of the leading vehicles. This set of three papers documents a study to examine the near-to-far regions of ground-vehicle wakes (one to ten vehicle lengths), in the context of their potential influence on other vehicles. Part two of this three-part paper documents the influence of the ambient winds on the development of the wake behind a vehicle.
Journal Article

Near-to-Far Wake Characteristics of Road Vehicles Part 3: Influence of Multi-Vehicle Interactions

2021-04-06
2021-01-0959
Conventional assessments of the aerodynamic performance of ground vehicles have, to date, been considered in the context of a vehicle that encounters a uniform wind field in the absence of surrounding traffic. Recent vehicle-platooning studies have revealed measurable fuel savings when following other vehicles at inter-vehicle distances experienced in every-day traffic. These energy savings have been attributed in large part to the air-wakes of the leading vehicles. This set of three papers documents a study to examine the moderate-to-far regions of ground-vehicle wakes (one to ten vehicle lengths), in the context of their potential influence on other vehicles. Part Three of this three-part paper documents the wake characteristics for multi-vehicle scenarios of two or three vehicles, in single-lane or two-lane arrangements.
Journal Article

Near-to-Far Wake Characteristics of Road Vehicles Part 1: Influence of Ground Motion and Vehicle Shape

2021-04-06
2021-01-0957
Conventional assessments of the aerodynamic performance of ground vehicles have, to date, been considered in the context of a vehicle that encounters a uniform wind field in the absence of surrounding traffic. Recent vehicle-platooning studies have revealed measurable fuel savings when following other vehicles at inter-vehicle distances experienced in every-day traffic. These energy savings have been attributed in large part to the air-wakes of the leading vehicles. This set of three papers documents a study to examine the near-to-far regions of ground-vehicle wakes (one to ten vehicle lengths), in the context of their potential influence on other vehicles. Part one of this three-part paper documents principally the influence of vehicle shape on the development of its wake.
Technical Paper

An Experimental Study on the Effect of Exhaust Gas Recirculation on a Natural Gas-Diesel Dual-Fuel Engine

2020-04-14
2020-01-0310
Natural gas (NG)-diesel dual-fuel combustion can be a suitable solution to reduce the overall CO2 emissions of heavy-duty vehicles using diesel engines. One configuration of such a dual-fuel engine can be port injection of NG to form a combustible air-NG mixture in the cylinder. This mixture is then ignited by a direct injection of diesel. Other potential advantages of such an engine include the flexibility of switching back to diesel-only mode, reduced hardware development costs and lower soot emissions. However, the trade-off is lower brake thermal efficiency (BTE) and higher hydrocarbon emissions, especially methane, at low load and/or high engine speed conditions. Advancing the diesel injection timing tends to improve the BTE but may cause the NOx emissions to increase.
X