Refine Your Search

Topic

Author

Search Results

Technical Paper

A methodology to develop and validate a 75-kWh battery pack model with its cooling system under a real driving cycle.

2024-06-12
2024-37-0012
A major issue of battery electric vehicles (BEV) is optimizing driving range and energy consumption. Under actual driving, transient thermal and electrical performance changes could deteriorate the battery cells and pack. These performances can be investigated and controlled efficiently with a thermal management system (TMS) via model-based development. A complete battery pack contains multiple cells, bricks, and modules with numerous coolant pipes and flow channels. However, such an early modeling stage requires detailed cell geometry and specifications to estimate the thermal and electrochemical energies of the cell, module, and pack. To capture the dynamic performance changes of the LIB pack under real driving cycles, the thermal energy flow between the pack and its TMS must be well predicted. This study presents a BTMS model development and validation method for a 75-kWh battery pack used in mass-production, mid-size battery SUV under WLTC.
Technical Paper

Measured Thermal Performances at Brick and Module Levels in a Battery Pack of a Mid-Size Electric Vehicle under WLTC and FTP Cycles

2024-04-09
2024-01-2673
Performances of battery electric vehicles (BEV) are affected by the thermal imbalance in the battery packs under driving cycles. BEV thermal management system (VTMS) should be managed efficiently for optimal energy consumption and cabin comfort. Temperature changes in the brick, module, and pack under the repeated transient cycles must be understood for model-based development. The authors conducted chassis dynamometer experiments on a fully electric small crossover sports utility vehicle (SUV) to address this challenge. A BEV is tested using a hub-type, 4-wheel motor chassis dynamometer with an air blower under the Worldwide Harmonized Light Vehicles Test Cycle (WLTC) and Federal Test Procedures (FTP) with various ambient temperatures. The mid-size BEV with dual-motor featured 80 thermocouples mounted on the 74-kWh battery pack, including the cells, upper tray, side cover, and pack cover.
Technical Paper

Effects of Pre-Chamber Internal Shape on CH4-H2 Combustion Characteristics Using Rapid-Compression Expansion Machine Experiments and 3D-CFD Analysis

2023-08-28
2023-24-0043
Pre-chamber (PC) natural gas and hydrogen (CH4-H2) combustion can improve thermal efficiency and greenhouse gas emissions from decarbonized stationary engines. However, the engine efficiency is worsened by prolonged combustion duration due to PC jet velocity extinction. This work investigates the impact of cylindrical PC internal shapes to increase its jet velocity and shorten combustion duration. A rapid compression and expansion machine (RCEM) is used to investigate the combustion characteristics of premixed CH4 gas. The combustion images are recorded using a high-speed camera of 10,000 fps. The experiments are conducted using two types of long PC shapes with diameters φ=4 mm (hereafter, longφ4) and 5 mm (hereafter, long φ5), and their combustions are compared against a short PC shape (φ=12 mm). For all designs of the PC shapes, the PC holes are 6 with 2 mm in diameter.
Technical Paper

Experimental and 3D-CFD Analysis of Synthetic Fuel Properties on Combustion and Exhaust Gas Emission Characteristics in Heavy-Duty Diesel Engines

2023-08-28
2023-24-0052
Synthetic fuels can significantly improve the combustion and emission characteristics of heavy-duty diesel engines toward decarbonizing heavy-duty propulsion systems. This work analyzes the effects of engine operating conditions and synthetic fuel properties on spray, combustion, and emissions (soot, NOx) using a supercharging single-cylinder engine experiment and KIVA-4 code combined with CHEMKIN-II and in-house phenomenological soot model. The blended fuel ratio is fixed at 80% diesel and 20% n-paraffin by volume (hereafter DP). Diesel, DP1 (diesel with n-pentane C5H12), DP2 (diesel with n-hexane C6H14), and DP3 (diesel with n-heptane C7H16) are used in engine-like-condition constant volume chamber (CVC) and engine experiments. Boosted engine experiments (1080 rpm, common-rail injection pressure 160 MPa, multi-pulse injection) are performed using the same DP fuel groups under various main injection timings, pulse-injection intervals, and EGR = 0-40%.
Technical Paper

Combustion Experiments of Focusing Engine with Asymmetric Double-Piston System Leading to Relatively-Silent High Compression Ratios

2023-04-11
2023-01-0401
In our previous reports, we proposed a new focusing engine with high thermal efficiency based on relatively-silent high compression and nearly-complete air-insulation effect, which employs pulsed multi-jets of gas collided around chamber center. Local compression level due to the gas jets colliding around chamber center before reaction can be varied from zero to 100MPa and 3000K, by changing the number of jets and intake pressure. Relatively-silent high compression is possible, because region around chamber wall is at pressure level of traditional engines. This is suitable for various usages of automobiles, aerocrafts, and rockets, and also for various fuels including hydrogen, because high compression around chamber center leads to stable auto-ignition and potential of low NOx at very lean burning operation. We developed two types of focusing compression engines, without and with piston. For the new engine without piston, we obtained nearly-complete air-insulation and high thrust.
Technical Paper

A Study on Optimizing SHEV Components Specifications and Control Parameter Values for the Reduction of Fuel Consumption by Using a Genetic Algorithm

2022-03-29
2022-01-0655
For a series hybrid electric vehicle (SHEV), the electric motor is responsible for driving the wheels, while the engine drives the only generator to provide electricity. SHEVs set a control strategy to make the engine run near the fixed operating point with high thermal efficiency, thereby effectively reducing fuel consumption. The powertrain system of HEV is more complex than that of a conventional drive system using only an internal combustion engine, and it is time-consuming to obtain the optimal components specification values and control parameters. Therefore, automatic optimization methods are required nowadays. We used Genetic Algorithm (GA) as the optimization method and optimize powertrain specifications and control parameter values to reduce fuel consumption. The results show that it is an effective optimization method.
Technical Paper

Effects of Partial Oxidation in an Unburned Mixture on a Flame Stretch under EGR Conditions

2021-09-21
2021-01-1165
The purpose of the present study is to find a way to extend a combustion stability limit for diluted combustion in a spark-ignition (SI) gasoline engine which has a high compression ratio. This paper focuses on partial oxidation in an unburned mixture which is observed in the high compression engine and clarifies the effect of partial oxidation in an unburned mixture on the behavior of a flame stretch and the extinction limit. The behavior of the flame stretch was simulated using the detailed chemical kinetics simulation with the opposed-flow flame reactor model. In the simulation, the reactants which have various reaction progress variables were examined to simulate the flame stretch and extinction under the partial oxidation conditions. The mixtures were also diluted by complete combustion products which represent exhaust gas recirculation (EGR).
Technical Paper

A Novel Integrated Series Hybrid Electric Vehicle Model Reveals Possibilities for Reducing Fuel Consumption and Improving Exhaust Gas Purification Performance

2021-09-21
2021-01-1244
This paper describes the development of an integrated simulation model for evaluating the effects of electrically heating the three-way catalyst (TWC) in a series hybrid electric vehicle (s-HEV) on fuel economy and exhaust gas purification performance. Engine and TWC models were developed in GT-Power to predict exhaust emissions during transient operation. These models were validated against data from vehicle tests using a chassis dynamometer and integrated into an s-HEV model built in MATLAB/Simulink. The s-HEV model accurately reproduced the performance characteristics of the vehicle’s engine, motor, generator, and battery during WLTC mode operation. It can thus be used to predict the fuel consumption, emissions, and performance of individual powertrain components. The engine combustion characteristics were reproduced with reasonable accuracy for the first 50 combustion cycles, representing the cold-start condition of the driving mode.
Technical Paper

Numerical Methods on VVA and VCR Concepts for Fuel Economy Improvement of a Commercial CNG Truck

2020-09-15
2020-01-2083
Natural gas has been used in spark-ignition (SI) engines of natural gas vehicles (NGVs) due to its resource availability and stable price compared to gasoline. It has the potential to reduce carbon monoxide emissions from the SI engines due to its high hydrogen-to-carbon ratio. However, short running distance is an issue of the NGVs. In this work, methodologies to improve the fuel economy of a heavy-duty commercial truck under the Japanese Heavy-Duty Driving Cycle (JE05) is proposed by numerical 1D-CFD modeling. The main objective is a comparative analysis to find an optimal fuel economy under three variable mechanisms, variable valve timing (VVT), variable valve actuation (VVA), and variable compression ratio (VCR). Experimental data are taken from a six-cylinder turbocharged SI engine fueled by city gas 13A. The 9.83 L production engine is a CR11 type with a multi-point injection system operated under a stoichiometric mixture.
Technical Paper

Study on Hybrid Control Methods of Heavy-Duty Plug-In Hybrid Vehicle for Improving Fuel Economy and Emissions

2020-09-15
2020-01-2259
Fuel consumption and exhaust gas emission regulations are being tightened around the world year by year. Electric vehicles are needed to reduce carbon dioxide emissions. Especially, Plug-in hybrid heavy-duty vehicles (PHEVs) are expected to become widespread. PHEVs enable all-electric modes, as well as hybrid modes, using both engines and electric motors, but the control system significantly affects the characteristics of fuel consumption and gas emission. In this study, we used new testing machine (we call extended HILS) to analyze the fuel consumption and gas emission for different plug-in hybrid control systems and investigated the optimal control method for PHEVs.
Technical Paper

Effects of Using an Electrically Heated Catalyst on the State of Charge of the Battery Pack for Series Hybrid Electric Vehicles at Cold Start

2020-04-14
2020-01-0444
Battery models are being developed as a component of the powertrain systems of hybrid electric vehicles (HEVs) to predict the state of charge (SOC) accurately. Electrically heated catalysts (EHCs) can be employed in the powertrains of HEVs to reach the catalyst light off temperature in advance. However, EHCs draw power from the battery pack and hence sufficient energy needs to be stored to power auxiliary components. In series HEVs, the engine is primarily used to charge the battery pack. Therefore, it is important to develop a control strategy that triggers engine start/stop conditions and reduces the frequency of engine operation to minimize the equivalent fuel consumption. In this study, a battery pack model was constructed in MATLAB-Simulink to investigate the SOC variation of a high-power lithium ion battery during extreme engine cold start conditions (-7°C) with/without application of an EHC.
Technical Paper

Attainment of High Thermal Efficiency and Near-zero Emissions by Optimizing Injected Spray Configuration in Direct Injection Hydrogen Engines

2019-12-19
2019-01-2306
The authors have previously proposed a plume ignition and combustion concept (i.e., PCC combustion), in which a hydrogen fuel is directly injected to the combustion chamber in the latter half of compression stroke and forms a richer mixture plume. By combusting the plume, both cooling losses and NOx formation are reduced. In this study, thermal efficiency was substantially improved and NOx formation was reduced with PCC combustion by optimizing such characteristics as direction and diameter of the jets in combination with combustion of lean mixture. Output power declined due to the lean mixture, however, was recovered by supercharging while keeping NOx emissions at the same level. Thermal efficiency was further improved by slightly re-optimizing the jet conditions.
Journal Article

Study of New HILS Test Method with Combination of the Virtual Hybrid Electric Powertrain Systems and the Engine Test Bench

2019-12-19
2019-01-2343
Fuel consumption rate (fuel economy) and exhaust gas emission regulations are being tightened around the world year by year. In Europe, the real driving emission (RDE) method for evaluating exhaust gas emitted from road-going vehicles was introduced after September 2017 for new types of light/medium-duty vehicles, in addition to the chassis dynamometer test using the worldwide harmonized light vehicles test procedure (WLTP). Further, the worldwide harmonized heavy-duty certification (WHDC) method was introduced after 2016 as an exhaust gas emission test method for heavy-duty vehicles. In each evaluation, the tests of vehicles and engines are initiated from cold states. Heavy-duty hybrid vehicles are evaluated using the vehicle simulation method. For example, the power characteristics of a engine model is obtained during engine warm operation. Therefore, various performances during cold start cannot be precisely evaluated by using simulator.
Technical Paper

A Fundamental Study on Combustion Characteristics in a Pre-Chamber Type Lean Burn Natural Gas Engine

2019-09-09
2019-24-0123
Pre-chamber spark ignition technology can stabilize combustion and improve thermal efficiency of lean burn natural gas engines. During compression stroke, a homogeneous lean mixture is introduced into pre-chamber, which separates spark plug electrodes from turbulent flow field. After the pre-chamber mixture is ignited, the burnt jet gas is discharged through multi-hole nozzles which promotes combustion of the lean mixture in the main chamber due to turbulence caused by high speed jet and multi-points ignition. However, details mechanism in the process has not been elucidated. To design the pre-chamber geometry and to achieve stable combustion under the lean condition for such engines, it is important to understand the fundamental aspects of the combustion process. In this study, a high-speed video camera with a 306 nm band-pass filer and an image intensifier is used to visualize OH* self-luminosity in rapid compression-expansion machine experiment.
Technical Paper

Experimental Study of Spark-Assisted Auto-Ignition Gasoline Engine with Octagonal Colliding Pulsed Supermulti-Jets and Asymmetric Double Piston Unit

2018-10-30
2018-32-0004
Much effort has been devoted to studies on auto-ignition engines of gasoline including homogeneous-charge combustion ignition engines over 30 years, which will lead to lower exhaust energy loss due to high-compression ratio and less dissipation loss due to throttle-less device. However, the big problem underlying gasoline auto-ignition is knocking phenomenon leading to strong noise and vibration. In order to overcome this problem, we propose the principle of colliding pulsed supermulti-jets. In a prototype engine developed by us, octagonal pulsed supermulti-jets collide and compress the air around the center point of combustion chamber, which leads to a hot spot area far from chamber walls. After generating the hot spot area, the mechanical compression of an asymmetric double piston unit is added in four-stroke operation, which brings auto-ignition of gasoline.
Technical Paper

Unsteady Three-Dimensional Computations of the Penetration Length and Mixing Process of Various Single High-Speed Gas Jets for Engines

2017-03-28
2017-01-0817
For various densities of gas jets including very light hydrogen and relatively heavy ones, the penetration length and diffusion process of a single high-speed gas fuel jet injected into air are computed by performing a large eddy simulation (LES) with fewer arbitrary constants applied for the unsteady three-dimensional compressible Navier-Stokes equation. In contrast, traditional ensemble models such as the Reynolds-averaged Navier-Stokes (RANS) equation have several arbitrary constants for fitting purposes. The cubic-interpolated pseudo-particle (CIP) method is employed for discretizing the nonlinear terms. Computations of single-component nitrogen and hydrogen jets were done under initial conditions of a fuel tank pressure of gas fuel = 10 MPa and back pressure of air = 3.5 MPa, i.e., the pressure level inside the combustion chamber after piston compression in the engine.
Technical Paper

High Thermal Efficiency Obtained with a Single-Point Autoignition Gasoline Engine Prototype Having Pulsed Supermulti-Jets Colliding in an Asymmetric Double Piston Unit

2016-10-17
2016-01-2336
A single-point autoignition gasoline engine (Fugine) proposed by us previously has a strongly asymmetric double piston unit without poppet valves, in which pulsed multi-jets injected from eight suction nozzles collide around the combustion chamber center. Combustion experiments conducted on this engine at a low operating speed of 2000 rpm using gasoline as the test fuel under lean burn conditions showed both high thermal efficiency comparable to that of diesel engines and silent combustion comparable to that of conventional spark-ignition gasoline engines. This gasoline engine was tested with a weak level of point compression generated by negative pressure of about 0.04 MPa and also at an additional mechanical homogeneous compression ratio of about 8:1 without throttle valves. After single-point autoignition, turbulent flame propagation may occur at the later stage of heat release.
Technical Paper

Computations and Experiments of Single-Point Autoignition Gasoline Engine with Colliding Pulsed Supermulti-Jets, Single Piston and Rotary Valve

2016-10-17
2016-01-2334
A new engine concept (Fugine) based on colliding pulsed supermulti-jets was proposed in recent years, which is expected to provide high thermal efficiencies over 50% and less combustion noise. Theoretical analyses indicate a high potential for thermal efficiency over 60%. Three types of prototype engines have been developed. The first prototype engine based only on the colliding of pulsed supermulti-jets with fourteen nozzles has no piston compression, while the second type equipped with a low-cost gasoline injector in the suction port has a double piston system and eight jet nozzles. Combustion experiments conducted on the second prototype gasoline engine show high thermal efficiency similar to that of traditional diesel engines and lower combustion noise comparable to that of traditional spark-ignition gasoline engines.
Journal Article

An Investigation on the Ignition Characteristics of Lubricant Component Containing Fuel Droplets Using Rapid Compression and Expansion Machine

2016-10-17
2016-01-2168
With the development of downsized spark ignition (SI) engines, low-speed pre-ignition (LSPI) has been observed more frequently as an abnormal combustion phenomenon, and there is a critical need to solve this issue. It has been acknowledged that LSPI is not directly triggered by autoignition of the fuel, but by some other material with a short ignition delay time. It was previously reported that LSPI can be caused by droplets of lubricant oil intermixed with the fuel. In this work, the ignition behavior of lubricant component containing fuel droplets was experimentally investigated by using a constant volume chamber (CVC) and a rapid compression and expansion machine (RCEM), which enable visualization of the combustion process in the cylinder. Various combinations of fuel compositions for the ambient fuel-air mixture and fractions of base oil/metallic additives/fuel for droplets were tested.
Journal Article

A Study on High-Accuracy Test Method for Fuel Consumption of Heavy-Duty Diesel Vehicles Considering the Transient Characteristics of Engines

2016-04-05
2016-01-0908
In the conventional approval test method of fuel consumption for heavy-duty diesel vehicles currently in use in Japan, the fuel consumption under the transient test cycle is calculated by integrating the instantaneous fuel consumption rate referred from a look-up table of fuel consumptions measured under the steady state conditions of the engine. Therefore, the transient engine performance is not considered in this conventional method. In this study, a highly accurate test method for fuel consumption in which the map-based fuel consumption rate is corrected using the transient characteristics of individual engines was developed. The method and its applicability for a heavy-duty diesel engine that complied with the Japanese 2009 emission regulation were validated.
X