Refine Your Search

Search Results

Viewing 1 to 15 of 15
Journal Article

A Study of HCCI Knocking Accompanied by Pressure Oscillations Based on Visualization of the Entire Bore Area

2014-10-13
2014-01-2664
Knocking combustion experiments were conducted in this study using a test engine that allowed the entire bore area to be visualized. The purpose was to make clear the detailed characteristics of knocking combustion that occurs accompanied by cylinder pressure oscillations when a Homogeneous Charge Compression Ignition (HCCI) engine is operated at high loads. Knocking combustion was intentionally induced by varying the main combustion period and engine speed. Under such conditions, knocking in HCCI combustion was investigated in detail on the basis of cylinder pressure analysis, high-speed photography of the combustion flame and spectroscopic measurement of flame light emissions. The results revealed that locally occurring autoignition took place rapidly at multiple locations in the cylinder when knocking combustion occurred. In that process, the unburned end gas subsequently underwent even more rapid autoignition, giving rise to cylinder pressure oscillations.
Journal Article

Visualization and Spectroscopic Measurement of Knocking Combustion Accompanied by Cylinder Pressure Oscillations in an HCCI Engine

2013-10-15
2013-32-9166
Combustion experiments were conducted with an optically accessible engine that allowed the entire bore area to be visualized for the purpose of making clear the characteristics that induce extremely rapid HCCI combustion and knocking accompanied by cylinder pressure oscillations. The HCCI combustion regime was investigated in detail by high-speed in-cylinder visualization of autoignition and combustion and emission spectroscopic measurements. The results revealed that increasing the equivalence ratio and advancing the ignition timing caused the maximum pressure rise rate and knocking intensity to increase. In moderate HCCI combustion, the autoignited flame was initially dispersed temporally and spatially in the cylinder and then gradually spread throughout the entire cylinder.
Technical Paper

A Study of the Effects of Varying the Supercharging Pressure and Fuel Octane Number on Spark Ignition Engine Knocking using Spectroscopic Measurement and In-cylinder Visualization

2013-10-15
2013-32-9030
Engine downsizing with a turbocharger / supercharger has attracted attention as a way of improving the fuel economy of automotive gasoline engines, but this approach can be frustrated by the occurrence of abnormal combustion. In this study, the factors causing abnormal combustion were investigated using a supercharged, downsized engine that was built by adding a mechanical supercharger. Combustion experiments were conducted in which the fuel octane number and supercharging pressure were varied while keeping the engine speed, equivalence ratio and intake air temperature constant. In the experiments, a visualization technique was applied to photograph combustion in the combustion chamber, absorption spectroscopy was used to investigate the intermediate products of combustion, and the cylinder pressure was measured. The experimental data obtained simultaneously were then analyzed to examine the effects on combustion.
Technical Paper

Spectroscopic Study of Two-Stage High Temperature Heat Release Behavior in a Supercharged HCCI Engine using Blended Fuels

2011-08-30
2011-01-1788
This study examined the effects of fuel composition and intake pressure on two-stage high temperature heat release characteristics of a Homogeneous Charge Compression Ignition (HCCI) engine. Light emission and absorption spectroscopic measurement techniques were used to investigate the combustion behavior in detail. Chemical kinetic simulations were also conducted to analyze the reaction mechanisms in detail. Blended fuels of dimethyl ether (DME) and methane were used in the experiments. It was found that the use of such fuel blends together with a suitable intake air flow rate corresponding to the total injected heat value gave rise to two-stage heat release behavior of the hot flame, which had the effect of moderating combustion. The results of the spectroscopic measurements and the chemical kinetic simulations revealed that the main reaction of the first stage of the hot flame heat release was one that produced CO from HCHO.
Technical Paper

Behavior of Shock Wave and Pressure Wave of SI Knocking with Super Rapid Compression Machine

2011-08-30
2011-01-1875
Behaviors of shock waves in knocking phenomena were observed in detail and influences of low temperature reaction on the flame and spontaneous ignition of end gas were investigated through experiments using high-speed direct and schlieren photography. As a result, it was found that light emission of shock waves, that is an indicator of pressure, rose when the shock waves collided with the cylinder wall and that pressure waves arose by low temperature reaction before knocking occurrence. Flame oscillation was caused by pressure waves. It is presumed that pressure waves influence spontaneous ignition.
Technical Paper

A New Method of Stress Calculation in Spot Welded Joint and Its Application to Fatigue Life Prediction of Actual Vehicle

2003-10-27
2003-01-2809
A method of fatigue life prediction of spot welded joint under multi-axial loads has been developed by fatigue life estimation working groups in the committee on fatigue strength and structural reliability of JSAE. This method is based on the concept of nominal structural stress ( σ ns) proposed by Radaj and Rupp, and improved so that D value is not involved in stress calculation. The result of fatigue life estimation of actual vehicle with nominal structural stress which was calculated through newly developed method had very good correlation with the result of multi-axial loads fatigue test carried out with test piece including high strength steel.
Technical Paper

Influence of direct electric field on the knock intensity in a spark-igntion engine

2000-06-12
2000-05-0158
In order to investigate the effects of a DC electric field and its polarity on the knock intensity in a spark-ignition engine, an experimental study was carried out with a rapid compression machine. To get a good understanding of the effect of an electric field on knocking combustion, the high-speed direct photographs were taken. The ionization current measurements were also carried out using the electrode as an ionization probe The major findings of present investigation of the effects of DC electric fields on the knocking combustion process in a spark-ignition engine could be summarized as follows: It was clearly indicated that the knock intensity decreases with the increase of the electric field regardless its polarity. The knock intensity was strongly dependent upon the burned mass fraction at the onset of the end-gas autoignition, and decreased as the burned mass fraction increased.
Technical Paper

Simultaneous measurements of absorption and emission in preflame reaction under knocking operation

2000-06-12
2000-05-0159
There is an urgent need today to improve the thermal efficiency of spark- ignition (SI) engines in order to reduce carbon dioxide emission and conserve energy in an effort to prevent global warming. However, a major obstacle to improving thermal efficiency by raising the compression ratio of SI engine is the easily occurrence of engine knocking. The result of studies done by numerous researchers have shown that knocking is an abnormal combustion in which the unburned gas in the end zone of the combustion chamber autoignites. However, the combustion reaction mechanism from autoignition to the occurrence of knocking is still not fully understood. The study deals with the light absorption and emission behavior in the preflame reaction interval before hot flame reactions.
Technical Paper

Method of Fatigue Life Estimation for Spot-Welded Structures

2000-03-06
2000-01-0779
A method of fatigue life estimation for the spot-welds of vehicle body structures by means of Finite Element Analysis (FEA) was studied. 6 general forces applied to a nugget of spot-weld under multiaxial loads were determined and the Nominal Structural Stress (σns) was calculated from them. It was confirmed that fatigue strength of the spot-welds under various multiaxial loads could be estimated universally by using σns. Based on the theory of elasticity of plates, stress of spot-weld nugget was analyzed. The theoretical equations for determining the principal stress at the nugget edge from6 general forces acting on a nugget were derived. And the principal stress was defined as the σns. The value of σns was determined by FEM that used a solid model and compared with the theoretical calculation value. They agreed quite well. Fatigue tests of DC specimens under various multiaxial loads (shear plus cross tension and tensile shear plus torsion) were conducted.
Technical Paper

Spectroscopic Measurement of Radical Behavior Under Knocking Operation, 1995

1995-10-01
952407
The purpose of this research was to obtain a better understanding of engine knocking phenomena. Measurements were made of the behavior of formaldehyde (HCHO), an important intermediate product of cool flame reactions, and of the HCO radical, characterized by distinctive light emission during blue flame reactions. The test engine was operated on a blended fuel (50 RON) of n-heptane and iso-octane. Simultaneous measurements were made of the behavior of HCHO and the OH radical using absorption spectroscopy and of the behavior of HCO and OH radicals using emission spectroscopy. Absorbance spectroscopic measurements revealed behavior thought to correspond to the passage of a cool flame and emission spectroscopic measurements showed behavior thought to correspond to the passage of a blue flame.
Technical Paper

Influence of the Characteristic Length on Performance of Plasma Jet Igniters

1994-10-01
942051
The investigation regarding performance of plasma jet igniters was explored by using a constant volume vessel. This study focused on investigating the relationship between the jet effect, the hot gas jet issued from the igniter, and combustion enhancement. The hot gas penetration was visualized by the schlieren system with CCD camera and image intensifier. In the cases of small energies, 0.63 and 0.90 J, the combustion enhancement effect is similar to that of combustion jet igniter. In cases of supplied energies, 2.45 and 5.00 J, the jet effect influences on the combustion enhancement effect for small characteristic length of the igniter.
Technical Paper

Fatigue Strength of the Adhesive Bonded Box-Beam with a Longitudinal Partition Under Torsion

1993-11-01
931888
Fatigue strength of adhesive bonded box beams with longitudinal partition was investigate. From results of the fatigue tests, it was seen that the fatigue strength of bonded beams was higher than that of spot welded beams. Fatigue strength of bonded beams was independent of plate thickness and partition. The flexural rigidity of the box beams in the plane of partition can increase without decrease of torsional rigidity and torsional fatigue strength, if the partition is jointed by adhesive bonding instead of spot welding.
Technical Paper

Stress Analysis and Fatigue Strength on Adhesive Joints

1993-11-01
931886
Fatigue strength of steel sheet adhesive joints was investigated. From the results of the fatigue tests, it was obtained that the fatigue strength of the tensile-shear adhesive joints was much higher than that of the T-type tension adhesive joints. Stress distributions on adhesive layer have been analyzed by theoretical analysis method. All of the data obtained by the fatigue tests fell almost on one S/N curve, in spite of the differences of joints type and plate thickness, if the equivalent stress(Mises stress) range of the adhesive layer at the periphery of the end of the jointed part obtained by theoretical analysis was taken as the ordinate of S/N curve.
Technical Paper

Simultaneous Measurement of Light Emission and Absorption Behavior of Unburned Gas During Knocking Operation

1993-10-01
932754
With the aim of elucidating the mechanism generating knock, an examination was made of the preflame reaction behavior of end gas in the combustion chamber in the transition from normal combustion to abnormal combustion characterized by the occurrence of knocking. Simultaneous measurements were made in the same cycle of the light absorption and emission behavior of the OH (characteristic spectrum of 306.4 nm), CH (431.5 nm) and C2 (516.5 nm) radicals in the end-gas region using spectroscopic methods. The absorbance behavior of a blue flame prior to autoignition is believed to be an important factor in the mechanism causing knock.
Technical Paper

Theoretical Analysis of Stress Distribution in Weldbonding Lap Joints Under Tension

1989-11-01
891358
The stress distribution in each plates and the adhesive layer of weldbonding lap joints under tension was theoretically analyzed by superposition of the solutions of a plane stress problem and a plate bending problem based on the theory of elasticity. Main results were as follows: (1) theoretical results of stress distribution in the plates corresponded well with the experimental results; (2) the stress concentration at the edges of spot welded part of plates was much relieved by weldbonding; and (3) as the adhesive layer softens with heat, the load shearing at the spot welded part increases, and shear stress at the lap ends decreases.
X