Refine Your Search

Topic

Search Results

Technical Paper

Air Conditioning System for Electric Vehicle

1996-02-01
960688
The electricity stored in the battery is the only source of energy driving an electric vehicle (EV). Therefore, the target of the air conditioning system for EVs is to cool and heat the air in the cabin and demist the wind shield using a small power consumption. We have developed a dehumidifying heat pump system that consists of an interior unit constructed to separate the recirculation air flow and fresh air flow, an exterior unit capable of controlling the absorption and radiation of heat, and an inverter-controlled, electric-driven compressor. The results of an experiment using this system proved that it could provide comfortable cabin air and good visibility through the wind shield with small power consumption at ambient temperatures ranging from -10°C to 40°C.
Technical Paper

Analysis of Diesel Smoke Emission at Low Engine Speed

1995-02-01
950084
In recent years, diesel engine exhaust gas regulations become more severe due to environmental concerns. Especially, particulate reduction is one of the biggest concern, and the reduction through high injection pressure has been studied.(1), (2) and (3) However, much is not yet known about the influence of changes in fuel flow inside the nozzle tip on atomization and engine performance, and there would exist a lot of room for exhaust gas reduction through the nozzle modification. In this research we found that changing the shape of the nozzle tip showed a remarkable difference in the smoke emission at low engine speed, analysis showed that difference in the flow rate at the nozzle orifice cause difference in the fuel spray droplet size and therefore the difference in the smoke emission.
Technical Paper

Benefits of New Fuel Injection System Technology on Cold Startability of Diesel Engines - Improvement of Cold Startability and White Smoke Reduction by Means of Multi Injection with Common Rail Fuel System (ECD-U2)

1994-03-01
940586
In the diesel engine field, increasingly strict emission regulations and customer requirements have necessitated advanced technology. One important subject for diesel engines is cold startability and white smoke under cold conditions. In this paper, the combustion mechanism of a multi cylinder engine under cold conditions is discussed. First, during a starting condition, it is proved that the cold flame, which is caused by previously misfired fuel during intermittent combustion, promotes good combustion on the following cycle. Secondly, following engine starting, it is estimated that there is minimum fuel quantity above which combustion is carried out. The minimum fuel quantity depends upon the temperature of the combustion chamber. Unbalance between the minimum fuel quantity and actual injection quantity results in white smoke emission.
Technical Paper

Air Purification and Fragrance Control

1993-03-01
930013
Environmental control of the passenger compartment has become increasingly important and sophisticated. One major consideration of interior comfort is clean, healthful, aromatic air. Accordingly, two new products were developed to increase the dust removing and deodorizing effects. These are the “Air Purifier” and the air conditioner ventilation filter called the “Air Refiner”. The Air Purifier affects the air inside the vehicle, and the Air Refiner affects the air from outside the vehicle. Remarkable effects are achieved by employing a newly developed material called “Impregnated Activated Carbon Fiber (IACF)” which is utilized in both the Air Purifier and the Air Refiner. In addition to the air purification system, a new fragrance control system called the “Aroma Controller” was developed. The Aroma Controller allows the user to select from three aromatic fragrances. The fragrance is emitted intermittently by way of “1/f fluctuation control” via microcomputer control.
Technical Paper

Experimental Analysis on Fuel Flow Characteristics in the Nozzle for Direct Injection Engines

1993-03-01
931002
The purpose of this study is to make clear the relationship between flow characteristics in the nozzle and injected spray characteristics. In this paper, we discuss the effect of the sac volume in the standard hole type nozzle on fuel flow and spray. The main object of this paper is to analyze fuel flow characteristics in the nozzle by using the enlarged model nozzles. Spray investigations confirmed that reducing the sac volume causes changes in the fuel injection direction at the initial stage of injection and in the spray penetration over consecutive injection. Flow investigations in the injection hole clarified that meandering the flow in the hole causes changes in the fuel injection direction. Flow investigations in the sac chamber clarified that separating the flow from the sac wall causes meandering the flow in the hole. Furthermore, the methods to restrain the flow in the sac chamber from separating from the sac wall were discussed.
Technical Paper

Contribution of Fuel Flow Improvement in Nozzle to Spray Formation

1992-02-01
920622
This paper reports on research conducted at Nippondenso Co., Ltd. and Meiji University on nozzles for heavy duty diesel engines. It focuses on fuel flow analysis in the nozzle, a key component of Fuel Injection Systems (FIS). The optimum design nozzle improves fuel flow and spray characteristics. A newer and tougher emission regulation from the EPA for heavy duty diesel engines will be inevitable from 1998 onward. The goal of every company is to design new FIS in advance which meet the regulations of the future rather than paying for expensive developing costs after new laws have come into effect. To meet the regulation, requirements for FIS are higher injection pressure and injection rate control which create better fuel spray atomization and higher utilization of air. In particular, the nozzle must ensure that high injection pressure is effectively converted to fuel spray without pressure losses.
Technical Paper

Development of Hologram Head-Up Display

1992-02-01
920600
Instrument clusters used in automobiles play an important role as man-machine interface. A variety of information about the current driving situation is conveyed to the driver quickly and accurately. A great interest has been taken in the high visibility and legibility of the head-up display (subsequently abbreviated as HUD). Originally developed as display used in aeronautical applications, we have tried to exploit ways to adapt this device for automotive use. We have succeeded to produce a new HUD system, which has the following design features; (1) High brightness and high contrast display device using a liquid crystal display (subsequently abbreviated as LCD) and a halogen lamp illumination. (2) Long focus display in two colors using holographic lens. (3) Automatic dimming control system using an illuminance sensor. (see Fig. 1)
Technical Paper

A Low-Speed In-Vehicle Network for Body Electronics

1992-02-01
920231
The authors developed a low-speed in-vehicle network for the body control system on passenger cars, where the most remarkable effects to reduce the number of wire harnesses could be expected. First, the authors analyzed the body control system to clarify the specifications required to build a low-speed in-vehicle network. Then the authors worked out optimum communication protocol, placing emphasis on cost reduction which is the key to expanding the applications of the low-speed in-vehicle network over wider fields. The low-speed in-vehicle network was evaluated for its performance through simulation and on-vehicle tests, and proved the practical validity of the concept. It was also verified that introducing the low-speed in-vehicle network has a satisfactory effect to reduce the number of wire harnesses.
Technical Paper

Acoustic Noise Reduction in Automobile Alternator by Constrained Layer Damping of the Stator

1992-02-01
920407
1 Attenuation of acoustic noise from automobile components is important for passenger comfort. Since the alternator is one of the major sources of noise, many manufacturers have studied the various mechanisms which generate noise within an alternator as well as the methods to reduce the noise level. This paper presents the dynamic properties of the alternator with respect to the acoustic noise during current generation, and introduces a vibration damping structure based on experimental modal analysis. Rotating magnetic forces in a magnetic circuit (stator and rotor) can excite numerous structural resonances, resulting in acoustic noise. A modal analysis performed on the major magnetic circuit of the alternator (Nippondenso Co., Ltd.) revealed that the stator has elliptic, triangular and rectangular mode shapes in the radial coordinate plane, while the rotor does not have any significant resonances in the same 0 - 3 kHz region.
Technical Paper

Advanced In-Line Pump for Medium-Duty Diesel Engines to Meet Future Emissions Regulations

1991-02-01
910182
This paper describes the Nippondenso in-line pump system designed for U.S. 1991 emissions regulation for medium duty diesel engines. With the combined use of the further improved in-line pump, NB-S and the multi-hole nozzle with a smaller orifice diameter, the required injection pressure of 100 MPa to 120 MPa at the nozzle can be achieved. However, some problems to be resolved exist in the subject fuel injection system: (1) secondary injection, (2) cavitation erosion of injection pipe, (3) higher pressure sealing of fuel, (4) undesirable fuel delivery curve vs. pump speed (called “Trumpet Shape” fuel delivery curve) Thus technical measures to cope with those problems are explained in details.
Technical Paper

High Speed Control of Damping Force Using Piezoelectric Elements

1991-02-01
910661
Semi-active suspension is one of many effective devices to improve vehicle stability, controllability and riding comfort. A practical means to realize semi-active suspension is to vary the damping force of the shock absorber. In this paper, we propose a new type of shock absorber using a piezoelectric sensor and actuator. The piezoelectric sensor and actuator are built into the piston rod which is a part of the shock absorber. The piezoelectric element provides a fast response and a high actuation force. We used the piezoelectric element in shock absorbers in order to take advantage of these two features. High level compatibility between stability, controllability and riding comfort is expected, since damping force changes very quickly using this new type of shock absorber. In this paper, several topics are discussed. First, a general description of the damping force control system with simple configuration is explained.
Technical Paper

Contribution of Optimum Nozzle Design to Injection Rate Control

1991-02-01
910185
The purpose of this paper is to discuss injection rate control of the nozzle for direct injection engines. This paper will focus on fuel flow analysis of the nozzle, a key component of Fuel Injection Systems (FIS). The optimum designed nozzle improves fuel flow efficiency and controls injection rate. To meet emission regulations in 1990's, FIS are required to produce higher injection pressure and injection rate control which creates better fuel spray atomization and higher utilization of air. But the higher injection pressure makes injection rate control difficult. In particular, injection rate control by needle lift traveling control is difficult because fuel flow characteristics in the nozzle change with injection pressure and needle lift. Furthermore, the forced control of needle lift results in poor fuel spray atomization.
Technical Paper

Development of New Electronically Controlled Fuel Injection System ECD-U2 for Diesel Engines

1991-02-01
910252
To meet the 1990s' requirements for diesel engines, the realization of innovative fuel injection system has been expected. Thus the fuel injection system named ECD-U2 was newly developed. ECD-U2 is the electronic unit injector system with high pressure common rail of which features are explained as follows; Fully electronic and flexible control in fuel quantity and injection timing. Adjustable injection rate shape Optimum injection pressure control Superior packageability and low drive torque loss. In this paper, design strategies, actual hardware configurations and some test results of ECD-U2 are described.
Technical Paper

Contribution of Optimum Design for Nozzle Configuration to Spray Formation

1990-02-01
900824
The purpose of this paper is to discuss spray control of nozzle for heavy duty diesel engines. This paper will focus on fuel flow analysis of nozzle, key component of FIE (Fuel Injection Equipment). The optimum designed nozzle controls fuel flow and improves flow efficiency. FIE is required to produce higher injection pressure which creates better atomization and higher utilization of air. But the higher injection pressure results in increased pump driving torque, larger pump size and higher cost. To improve the fuel flow characteristic of nozzle, we analyzed it and developed a theoretical analysis method with computer model simulation to the optimum design nozzle. We also confirmed its effect by experiments.
Technical Paper

Development of SV-06 A/C Compressor for Mini-Car Applications

1990-02-01
900221
The smaller and lighter SV-06 sliding vane type compressor has been developed as the successor of the swash plate type 10P08 compressor for mini-car air conditioning applications. The SV-06 is the first vane type compressor in the world which utilizes an aluminum cylinder and rotor to achieve weight reduction. This was accomplished by introducing several new features to the design, such as a boron treated vane and smooth cylinder profile. Thinner vanes and a high performance oil separator were also introduced for compactness. This paper presents the many design features that allow small size and low weight while maintaining compressor performance and reliability, and focuses on the most important technology: (1) Abrasion Characteristics of Boron Treated Vane Against Al-Si Alloy (2) Oil Separator Performance
Technical Paper

Semiconductor Device Simulation of Solid State Relay ‘Power MOSFETs’

1988-02-01
880410
This paper describes the development of the two-dimensional semiconductor device simulator called DS2* and its application in automotive power MOSFET design. DS2 clarifies carrier motions in MOSFETs under various operating conditions and calculates the current characteristics in intense electric fields in order to evaluate the device breakdown. Simulation results with p channel power MOSFETs for automotive application indicate that on resistance is significantly dependent on device miniaturization and that device breakdown is caused by one of three mechanisms which are, avalanche from the surface layer, reach through arid punch through.
Technical Paper

Development of a Turbine In-Tank Fuel Pump

1987-02-01
870121
Considerations have been made on using turbine pumps as in-tank fuel pumps for electronic fuel injection systems (EFI). Flow channel dimension values, which had not been previously used for these types of pumps, were found to be very suitable for use as a fuel pump. The oil film visualization method was used to observe the flow pattern within the pump, and the results served to improve the flow channel shape. This contributed to designing a compact and efficient high-pressure fuel pump.
Technical Paper

Road Signposts Recognition System

1987-02-01
870239
During motor vehicle operation, the image processing and pattern recognition of various external visual information to assist human vision is an effective method to improve safety and driving comfort. Research into image processing and pattern recognition, supported by advancing device and computer technology, is entering the age of practical application. Against this background, we have developed a system to visually detect, recognize and transmit to the vehicle operator road signs, which are definable patterns, as the first step in the application of image processing and pattern recognition technology to the automotive sector. The major points of this system are as follow: 1. A color processing system was adopted which reduces the effects of brightness and shadow, and implemented in dedicated hardware. 2. The development of dedicated hardware for template matching enables the real-time extraction and processing of defined patterns within the image.
Technical Paper

Ferroelectric Ceramic Materials to Protect Automotive Electronic Devices from Electromagnetic interference

1987-02-01
870213
EMI suppresion capacitors and filters are common in automobile electronics today, but they are insufficient for heavy concentrations of wideband electromagnetic radiation. To resolve this problem, a highly-integrated Ceramic Absorber was developed to efficiently shield against frequencies from 1MHz to 1000MHz, which is mountable on the control circuit board easily, as it is the form of a flat plate strip line. This filter provides the signal line with an electromagnetic absorption effect through line transmission characteristics. Research into ceramic materials was required to determine the specific dielectric constants and frequency characteristics of ferroelectric ceramic materials. The development objective was material with optimum dielectric dispersion, as determined from research into energy absorption based on the Debye dielectric dispersion theory.
Technical Paper

Electronic Transmission Control

1986-10-20
861032
Researches and developments of electronic transmission control have been made along with the progresses of electronical technologies in order to meet the requirements of decreasing fuel consumption as well as improving drivability. And nowadays many kinds of electronically controlled transmissions have been applied to a variety of cars. In this paper, a history of electronic transmission control from the first control systems mounted on TOYOTA CORONA in 1970s for the first time in the world to the newest ones having a lock-up function for fluid coupling (Torque Converter) as well as progresses of the respective electronical transmissions to their practical uses will be explained.
X