Refine Your Search

Topic

Author

Search Results

Technical Paper

Development of Plastic Region Tightening 1.6-GPa Ultra-High Strength Bolt with High Delayed Fracture Resistance

2019-04-02
2019-01-1116
A new variable compression turbo (VC-Turbo) engine, which has a multi-link system for controlling the compression ratio from 8:1 to 14:1, requires high axial force for fastening the multi-links because of high input loads and the downsizing requirement. Therefore, it was necessary to develop a 1.6-GPa tensile strength bolt with plastic region tightening. One of the biggest technical concerns is delayed fracture. In this study, quenched and tempered alloy steels were chosen for the 1.6-GPa tensile strength bolt.
Technical Paper

Research on the Effect of Lubricant Oil and Fuel Properties on LSPI Occurrence in Boosted S. I. Engines

2016-10-17
2016-01-2292
The effects of lubricant oil and fuel properties on low speed pre-ignition (LSPI) occurrence in boosted S.I. engines were experimentally evaluated with multi-cylinder engine and de-correlated oil and fuel matrices. Further, the auto-ignitability of fuel spray droplets and evaporated homogeneous fuel/oil mixtures were evaluated in a combustion bomb and pressure differential scanning calorimetry (PDSC) tests to analyze the fundamental ignition process. The work investigated the effect of engine conditions, fuel volatility and various lubricant additives on LSPI occurrence. The results support the validity of aspects of the LSPI mechanism hypothesis based on the phenomenon of droplets of lubricant oil/fuel mixture (caused by adhesion of fuel spray on the liner wall) flying into the chamber and autoigniting before spark ignition.
Technical Paper

TEM Analysis of Soot Particles Sampled from Gasoline Direction Injection Engine Exhaust at Different Fuel Injection Timings

2015-09-01
2015-01-1872
For better understanding of in-cylinder soot formation processes and governing factors of the number of emitted soot particles of Gasoline Direct Injection (GDI) engines, Transmission Electron Microscope (TEM) analysis of morphology and nanostructure of the soot particles sampled in the exhaust should provide useful information. However, the number concentration of the soot particles emitted from GDI engines is relatively low, which was impeding reliable morphological analysis of the soot particles based on a sufficient number of sampled particles. Therefore, in the present study, a water-cooled thermophoretic sampler for simple and direct sampling of exhaust soot particles was developed and employed, which enabled to obtain a sufficient number of particle samples from the exhaust with Particulate Number (PN) 105 #/cc level for quantitative morphology analysis.
Technical Paper

Development of an On-Board Fuel Reforming Catalyst for a Gasoline Engine

2015-09-01
2015-01-1955
On-board hydrogen generation technology using a fuel reforming catalyst is an effective way to improve the fuel efficiency of automotive internal combustion engines. The main issue to be addressed in developing such a catalyst is to suppress catalyst deterioration caused by carbon deposition on the catalyst surface due to sulfur adsorption. Enhancing the hydrocarbon and water activation capabilities of the catalyst is important in improving catalyst durability. It was found that the use of a rare earth element is effective in improving the water activation capability of the catalyst. Controlling the hydrocarbon activation capability of the catalyst for a good balance with water activation was also found to be effective in improving catalyst durability.
Journal Article

A Study of a Multistage Injection Mechanism for Improving the Combustion of Direct-Injection Gasoline Engines

2015-04-14
2015-01-0883
Technologies for improving the fuel economy of gasoline engines have been vigorously developed in recent years for the purpose of reducing CO2 emissions. Increasing the compression ratio for improving thermal efficiency and downsizing the engine based on fuel-efficient operating conditions are good examples of technologies for enhancing gasoline engine fuel economy. A direct-injection system is adopted for most of these engines. Direct injection can prevent knocking by lowering the in-cylinder temperature through fuel evaporation in the cylinder. Therefore, direct injection is highly compatible with downsized engines that frequently operate under severe supercharging conditions for improving fuel economy as well as with high compression ratio engines for which susceptibility to knocking is a disadvantage.
Journal Article

Study of an On-board Fuel Reformer and Hydrogen-Added EGR Combustion in a Gasoline Engine

2015-04-14
2015-01-0902
To improve the fuel economy via high EGR, combustion stability is enhanced through the addition of hydrogen, with its high flame-speed in air-fuel mixture. So, in order to realize on-board hydrogen production we developed a fuel reformer which produces hydrogen rich gas. One of the main issues of the reformer engine is the effects of reformate gas components on combustion performance. To clarify the effect of reformate gas contents on combustion stability, chemical kinetic simulations and single-cylinder engine test, in which hydrogen, CO, methane and simulated gas were added to intake air, were executed. And it is confirmed that hydrogen additive rate is dominant on high EGR combustion. The other issue to realize the fuel reformer was the catalyst deterioration. Catalyst reforming and exposure test were carried out to understand the influence of actual exhaust gas on the catalyst performance.
Technical Paper

Impingement Behavior of Fuel Droplets on Oil Film

2015-04-14
2015-01-0913
In a direct injection gasoline engine, the impingement of injected fuel on the oil film, i.e. cylinder liner gives rise to various problems such as abnormal combustion, oil dilution and particulate matter emission. Therefore, in order to solve these problems, it is necessary to have a clear understanding of the impingement behavior of the fuel spray onto the oil film. However, there is little information on the impingement behavior of the fuel droplet onto the oil film, whereas many investigations on the impingement behavior of the fuel droplet onto the fuel film are reported. In this study, fundamental investigations were performed for the purpose of clarifying the impingement behavior of the fuel spray onto the oil film. A single fuel droplet mixed with fluorescence dye was dripped on the oil film. To separately measure the fuel and the oil after impingement, simultaneous Mie scattering and laser-induced fluorescence (LIF) methods were performed.
Technical Paper

Microfluidic Simulation of Diesel Exhaust Gas and Soot Oxidation in Diesel Particulate Filter

2013-03-25
2013-01-0009
Particulate matter (PM) including soot in diesel exhaust gas is a serious atmospheric pollutant, and stricter exhaust emission standards are being set in many countries. As one of the key technologies, a diesel particulate filter (DPF) for PM trap in the after-treatment of the exhaust gas has been developed. Typically, the inlet size of filter monolith is about 2 mm, and the thickness of the filter wall is only 0.2 mm, where soot particles are removed. It is impossible to observe the small-scale phenomena inside the filter, experimentally. Then, in the present study, we conducted microfluidic simulation with soot oxidation. Here, a real cordierite filter was used in the simulation. The inner structure of the filter was scanned by a 3D X-ray CT Computed Tomography) technique. The advantage is that it is non-intrusive system, and it has a high spatial resolution in the micrometer.
Journal Article

Study of the Impact of High Biodiesel Blends on Engine Oil Performance

2011-08-30
2011-01-1930
In Biodiesel Fuel Research Working Group(WG) of Japan Auto-Oil Program(JATOP), some impacts of high biodiesel blends have been investigated from the viewpoints of fuel properties, stability, emissions, exhaust aftertreatment systems, cold driveability, mixing in engine oils, durability/reliability and so on. This report is designed to determine how high biodiesel blends affect oil quality through testing on 2005 regulations engines with DPFs. When blends of 10-20% rapeseed methyl ester (RME) with diesel fuel are employed with 10W-30 engine oil, the oil change interval is reduced to about a half due to a drop in oil pressure. The oil pressure drop occurs because of the reduced kinematic viscosity of engine oil, which resulting from dilution of poorly evaporated RME with engine oil and its accumulation, however, leading to increased wear of piston top rings and cylinder liners.
Technical Paper

Low-cost FC Stack Concept with Increased Power Density and Simplified Configuration: Utilizing an Advanced MEA with Integrated Molded Frame

2011-05-17
2011-39-7260
In 2006, Nissan began limited leasing of the X-TRAIL FCV equipped with their in-house developed Fuel Cell (FC) stack. Since then, the FC stack has been improved in durability, cold start-up capability, cost and size with the aim of promoting full-scale commercialization of FCVs. However, reduction of cost and size has remained a significant challenge because limited mass transport through the membrane electrode assembly (MEA) has made it difficult to increase the rated current density of the FC. Furthermore, it has been difficult to reduce the variety of FC stack components due to the complex stack configuration. In this study, improvements have been achieved mainly by adopting an advanced MEA to overcome these difficulties. First, the adoption of a new MEA and separators has improved mass transport through the MEA for increased rated current density. Second, an integrated molded frame (IMF) has been adopted as the MEA support.
Journal Article

Low-Cost FC Stack Concept with Increased Power Density and Simplified Configuration Utilizing an Advanced MEA

2011-04-12
2011-01-1344
In 2006, Nissan began limited leasing of the X-TRAIL FCV equipped with their in-house developed Fuel Cell (FC) stack. Since then, the FC stack has been improved in cost, size, durability and cold start-up capability with the aim of promoting full-scale commercialization of FCVs. However, reduction of cost and size has remained a significant challenge because limited mass transport through the membrane electrode assembly (MEA) has made it difficult to increase the rated current density of the FC. Furthermore, it has been difficult to reduce the variety of FC stack components due to the complex stack configuration. In this study, improvements have been achieved mainly by adopting an advanced MEA to overcome these difficulties. First, the adoption of a new MEA and separators has improved mass transport through the MEA for increased rated current density. Second, an integrated molded frame (IMF) has been adopted as the MEA support.
Technical Paper

Crank-angle-resolved Measurements of Air-fuel Ratio, Temperature, and Liquid Fuel Droplet Scattering in a Direct-injection Gasoline Engine

2010-10-25
2010-01-2246
Simultaneous crank-angle-resolved measurements of gasoline vapor concentration, gas temperature, and liquid fuel droplet scattering were made with three-color infrared absorption in a direct-injection spark-ignition engine with premium gasoline. The infrared light was coupled into and out of the cylinder using fiber optics incorporated into a modified spark plug, allowing measurement at a location adjacent to the spark plug electrode. Two mid-infrared (mid-IR) laser wavelengths were simultaneously produced by difference-frequency-generation in periodically poled lithium niobate (PPLN) using one signal and two pump lasers operating in the near-infrared (near-IR). A portion of the near-IR signal laser residual provided a simultaneous third, non-resonant, wavelength for liquid droplet detection. This non-resonant signal was used to subtract the influence of droplet scattering from the resonant mid-IR signals to obtain vapor absorption signals in the presence of droplet extinction.
Technical Paper

Impact Study of High Biodiesel Blends on Exhaust Emissions to Advanced Aftertreatment Systems

2010-04-12
2010-01-1292
In Biodiesel Fuel Research Working Group(WG) of Japan Auto-Oil Program(JATOP), some impacts of high biodiesel blends have been investigated from the viewpoints of fuel properties, stability, emissions, exhaust aftertreatment systems, cold driveability, mixing in engine oils, durability/reliability and so on. In the impact on exhaust emissions, the impact of high biodiesel blends into diesel fuel on diesel emissions was evaluated. The wide variety of biodiesel blendstock, which included not only some kinds of fatty acid methyl esters(FAME) but also hydrofined biodiesel(HBD) and Fischer-Tropsch diesel fuel(FTD), were selected to evaluate. The main blend level evaluated was 5, 10 and 20% and the higher blend level over 20% was also evaluated in some tests. The main advanced technologies for exhaust aftertreatment systems were diesel particulate filter(DPF), Urea selective catalytic reduction (Urea-SCR) and the combination of DPF and NOx storage reduction catalyst(NSR).
Technical Paper

A New Quasi-Dimensional Combustion Model Applicable to Direct Injection Gasoline Engine

2010-04-12
2010-01-0544
Gasoline engines employ various mechanisms for improvement of fuel consumption and reduction of exhaust emissions to deal with environmental problems. Direct fuel injection is one such technology. This paper presents a new quasi-dimensional combustion model applicable to direct injection gasoline engine. The Model consists of author's original in-cylinder turbulence and mixture homogeneity sub model suitable for direct fuel injection conditions. Model validation results exhibit good agreement with experimental and 3D CFD data at steady state and transient operating conditions.
Technical Paper

Impact Study of High Biodiesel Blends on Performance of Exhaust Aftertreatment Systems

2008-10-06
2008-01-2494
Biodiesel Fuel (BDF) Research Work Group works on identifying technological issues on the use of high biodiesel blends (over 5 mass%) in conventional diesel vehicles under the Japan Auto-Oil Program started in 2007. The Work Group conducts an analytical study on the issues to develop measures to be taken by fuel products and vehicle manufacturers, and to produce new technological findings that could contribute to the study of its introduction in Japan, including establishment of a national fuel quality standard covering high biodiesel blends. For evaluation of the impacts of high biodiesel blends on performance of diesel particulate filter system, a wide variety of biodiesel blendstocks were prepared, ranging from some kinds of fatty acid methyl esters (FAME) to another type of BDF such as hydrotreated biodiesel (HBD). Evaluation was mainly conducted on blend levels of 20% and 50%, but also conducted on 10% blends and neat FAME in some tests.
Technical Paper

HCCI Combustion on a Diesel VCR Engine

2008-04-14
2008-01-1187
A variable compression ratio (VCR) technology, that has a new piston-crankshaft mechanism with multi links, has been patented and developed by Nissan for some years (This technology has been detailed in previous SAE paper 2003-01-0921 and 2005-01-1134). This paper will present the use of this VCR technology for Diesel engine. The objective set with the use of VCR for Diesel engine is mainly to reduce as much as possible engine out emission to prepare for long-term, more strict emission standards. Results presented will include the description of the 2l Diesel VCR engine and its VCR mechanism adapted to Diesel constraints. Combustion tests have been performed with the use of HCCI (Homogeneous Charge Compression Ignition) combustion. This technology is still in a research phase in Renault: the adaptation of VCR technology to a Diesel engine consists in the modification of several parts with the addition of lower links, control links and control shaft.
Technical Paper

Summary report of Japan Clean Air Program diesel and diesel fuel activities

2007-07-23
2007-01-1952
Diesel emissions are significant issue worldwide, and emissions requirements have become so tough that. the application of after-treatment systems is now indispensable in many countries To meet even more stringent future emissions requirements, it has become apparent that the improvement of market fuel quality is essential as well as the development in engine and exhaust after-treatment technology. Japan Clean Air Program II (JCAP II) is being conducted to assess the direction of future technologies through the evaluation of current automobile and fuel technologies and consequently to realize near zero emissions and carbon dioxide (CO2) emission reduction. In this program, effects of fuel properties on the performance of diesel engines and a vehicle equipped with two types of diesel NOx emission after-treatment devices, a Urea-SCR system and a NOx storage reduction (NSR) catalyst system, were examined.
Technical Paper

Development of Diesel Engine System with DPF for the European Market

2007-04-16
2007-01-1061
Nissan Motor has put on the European SUV market a 2.2-L direct-injection diesel engine with a diesel particulate filter (DPF) system that complies with the EURO IV emission regulations. This paper describes the DPF system, cooperative control of a variable geometry turbo (VGT) and exhaust gas recirculation (EGR), and a high-accuracy lambda control adopted for this engine. In order to achieve a compact DPF, the high-accuracy lambda control was developed to reduce variation in engine-out particulate matter (PM) emissions. Moreover, the accuracy of the technique for predicting the quantity of PM accumulation was improved for reliable detection of the DPF regeneration. Prediction error for PM accumulation increases during transient operation. Control logic was adopted to correct the PM prediction according to lambda fluctuation detected by an observer for lambda at cylinder under transient operating conditions. The observer is corrected lambda sensor output.
Technical Paper

Impact of Oil-derived Sulfur and Phosphorus on Diesel NOx Storage Reduction Catalyst - JCAP II Oil WG Report

2006-10-16
2006-01-3312
Emission regulations for diesel-powered vehicles have been gradually tightening. Installation of after-treatment devices such as diesel particulate filters (DPF), NOx storage reduction (NSR) catalysts, and so on is indispensable to satisfy rigorous limits of particulate matter (PM) and nitrogen oxides (NOx). Japan Clean Air Program II Oil Working Group (JCAPII Oil WG) has been investigating the effect of engine oil on advanced diesel after-treatment devices. First of all, we researched the impact of oil-derived ash on continuous regeneration-type diesel particulate filter (CR-DPF), and already reported that the less sulfated ash in oil gave rise to lower pressure drop across CR-DPF [1]. In this paper, impact of oil-derived sulfur and phosphorus on NSR catalyst was investigated using a 4L direct injection common-rail diesel engine with turbo-intercooler. This engine equipped with NSR catalyst meets the Japanese new short-term emission regulations.
Technical Paper

A Study of a DISI Engine with a Centrally Located High-pressure Fuel Injector

2004-10-25
2004-01-2944
Vehicle manufacturers developed two mixture formation concepts for the first generation of gasoline direct-injection (GDI) engines. Both the wall-guided concept with reverse tumble air motion or swirl air motion and the air-guided concept with tumble air motion have the fuel injector located at the side of the combustion chamber between the two intake ports. This paper proposes a new GDI concept. It has the fuel injector located at almost the center of the combustion chamber and with the spark plug positioned nearby. An oval bowl is provided in the piston crown. The fuel spray is injected at high fuel pressures of up to 100 MPa. The spray creates strong air motion in the combustion chamber and reaches the piston bowl. The wall of the piston bowl changes the direction of the spray and air motion, producing an upward flow. The spray and air flow rise and reach the spark plug.
X