Refine Your Search

Topic

Search Results

Technical Paper

Virtual Methodology for Active Force Cancellation in Automotive Application Using Mass Imbalance & Centrifugal Force Generation (CFG) Principle

2024-04-09
2024-01-2343
A variety of structures resonate when they are excited by external forces at, or near, their natural frequencies. This can lead to high deformation which may cause damage to the integrity of the structure. There have been many applications of external devices to dampen the effects of this excitation, such as tuned mass dampers or both semi-active and active dampers, which have been implemented in buildings, bridges, and other large structures. One of the active cancellation methods uses centrifugal forces generated by the rotation of an unbalanced mass. These forces help to counter the external excitation force coming into the structure. This research focuses on active force cancellation using centrifugal forces (CFG) due to mass imbalance and provides a virtual solution to simulate and predict the forces required to cancel external excitation to an automotive structure. This research tries to address the challenges to miniaturize the CFG model for a body-on-frame truck.
Technical Paper

Active Collision Avoidance System for E-Scooters in Pedestrian Environment

2024-04-09
2024-01-2555
In the dense fabric of urban areas, electric scooters have rapidly become a preferred mode of transportation. As they cater to modern mobility demands, they present significant safety challenges, especially when interacting with pedestrians. In general, e-scooters are suggested to be ridden in bike lanes/sidewalks or share the road with cars at the maximum speed of about 15-20 mph, which is more flexible and much faster than pedestrians and bicyclists. Accurate prediction of pedestrian movement, coupled with assistant motion control of scooters, is essential in minimizing collision risks and seamlessly integrating scooters in areas dense with pedestrians. Addressing these safety concerns, our research introduces a novel e-Scooter collision avoidance system (eCAS) with a method for predicting pedestrian trajectories, employing an advanced Long short-term memory (LSTM) network integrated with a state refinement module.
Journal Article

Suction Cup Quality Predication by Digital Image Correlation

2023-04-11
2023-01-0067
Vacuum suction cups are used as transforming handles in stamping lines, which are essential in developing automation and mechanization. However, the vacuum suction cup will crack due to fatigue or long-term operation or installation angle, which directly affects production productivity and safety. The better design will help increase the cups' service life. If the location of stress concentration can be predicted, this can prevent the occurrence of cracks in advance and effectively increase the service life. However, the traditional strain measurement technology cannot meet the requirements of tracking large-field stains and precise point tracking simultaneously in the same area, especially for stacking or narrow parts of the suction cups. The application must allow multiple measurements of hidden component strain information in different fields of view, which would add cost.
Journal Article

Development of Digital Shearography for Dual Sensitivity Simultaneous Measurement Using Carrier Frequency Spatial Phase Shift Technology

2023-04-11
2023-01-0068
Digital shearography has many advantages, such as full-field, non-contact, high sensitivity, and good robustness. It was widely used to measure the deformation and strain of materials, also to the application of nondestructive testing (NDT). However, most digital sherography applications can only work in one field of view per measurement, and some small defects may not be detected as a result. Multiple measurements of different fields of view are needed to solve this issue, which will increase the measurement time and cost. The difficulty in performing multiple measurements may also increase for cases where the loading is not repeatable. Therefore, a system capable of measuring dual fields of view at the same time is necessary. The carrier frequency spatial phase shift method may be a good candidate to reach this goal because it can simultaneously record phase information of multiple images, e.g. two speckle interferograms with different fields of view.
Technical Paper

Large-Angle Full-Field Strain Measurement of Small-Sized Objects Based on the Multi-Camera DIC Test System

2022-03-29
2022-01-0274
Digital Image Correlation (DIC) technology is a powerful tool in the field of experimental mechanics to obtain the full-field deformation/strain information of an object. It has been rapidly applied in industry in recent years. However, for the large-angle full-field strain measurement of small-sized cylindrical objects, it’s still a challenge to the DIC accurate measurement due to its small size and curved surface. In this paper, a measurement method based on the multi-camera DIC system is proposed to study the compressive performance of small-sized cylindrical materials. Three cameras form two stereo DIC measurement systems (1 and 2 cameras, and 2 and 3 cameras), each of which measures a part of the object. By calibrating three cameras at the same time, two stereos DIC coordinate systems can be unified to one coordinate system. Then match the two sets of DIC measurement data together to achieve large-angle measurement of the cylindrical surface.
Technical Paper

Human Body Orientation from 2D Images

2021-04-06
2021-01-0082
This work presents a method to estimate the human body orientation using 2D images from a person view; the challenge comes from the variety of human body poses and appearances. The method utilizes OpenPose neural network as a human pose detector module and depth sensing module. The modules work together to extract the body orientation from 2D stereo images. OpenPose is proven to be efficient in detecting human body joints, defined by COCO dataset, OpenPose can detect the visible body joints without being affected by backgrounds or other challenging factors. Adding the depth data for each point can produce rich information to the process of 3D construction for the detected humans. This 3D point’s setup can tell more about the body orientation and walking direction for example. The depth module used in this work is the ZED camera stereo system which uses CUDA for high performance depth computation.
Technical Paper

A Method of Filter Implementation Using Heterogeneous Computing System for Driver Health Monitoring

2021-04-06
2021-01-0103
Research in any field of study requires analysis and comparisons or real-time predictions to extract useful information. To prove that the results have practical potential, various filtering techniques and methodologies should be designed and implemented. Filters being a class of signal processing helps innovate new technologies with various kinds of outcomes, using filters there are always various methods to solve a problem. Considering the current COVID-19 situation, researchers are working on sequencing the novel coronavirus and the genomes of people afflicted with COVID-19 using CPUs and GPUs along with various filtering techniques. In this paper we are using a method of filter implementation to collect raw heart rate data samples from fingertip and ear lobe and process those results on CPUs and GPUs. Our method of implementation to collect raw heart rate data is using a photoplethysmography method.
Technical Paper

Pedestrian Orientation Estimation Using CNN and Depth Camera

2020-04-14
2020-01-0700
This work presents a method for estimating human body orientation using a combination of convolutional neural network (CNN) and stereo camera in real time. The approach uses the CNN model to predict certain human body keypoints then transforms these points into a 3D space using the stereo vision system to estimate the body orientations. The CNN module is trained to estimate the shoulders, the neck and the nose positions, detecting of three points is required to confirm human detection and provided enough data to translate the points into 3D space.
Technical Paper

Driver Visual Focus of Attention Estimation in Autonomous Vehicles

2020-04-14
2020-01-1037
An existing challenge in current state-of-the-art autonomous vehicles is the process of safely transferring control from autonomous driving mode to manual mode because the driver may be distracted with secondary tasks. Such distractions may impair a driver’s situational awareness of the driving environment which will lead to fatal outcomes during a handover. Current state-of-the-art vehicles notify a user of an imminent handover via auditory, visual, and physical alerts but are unable to improve a driver’s situational awareness before a handover is executed. The overall goal of our research team is to address the challenge of providing a driver with relevant information to regain situational awareness of the driving task. In this paper, we introduce a novel approach to estimating a driver’s visual focus of attention using a 2D RGB camera as input to a Multi-Input Convolutional Neural Network with shared weights. The system was validated in a realistic driving scenario.
Technical Paper

A Framework for Vision-Based Lane Line Detection in Adverse Weather Conditions Using Vehicle-to-Infrastructure (V2I) Communication

2019-04-02
2019-01-0684
Lane line detection is a very critical element for Advanced Driver Assistance Systems (ADAS). Although, there has been significant amount of research dedicated to the detection and localization of lane lines in the past decade, there is still a gap in the robustness of the implemented systems. A major challenge to the existing lane line detection algorithms stems from coping with bad weather conditions (e.g. rain, snow, fog, haze, etc.). Snow offers an especially challenging environment, where lane marks and road boundaries are completely covered by snow. In these scenarios, on-board sensors such as cameras, LiDAR, and radars are of very limited benefit. In this research, the focus is on solving the problem of improving robustness of lane line detection in adverse weather conditions, especially snow. A framework is proposed that relies on using Vehicle-to-Infrastructure (V2I) communication to access reference images stored in the cloud.
Technical Paper

Real Time 2D Pose Estimation for Pedestrian Path Estimation Using GPU Computing

2019-04-02
2019-01-0887
Future fully autonomous and partially autonomous cars equipped with Advanced Driver Assistant Systems (ADAS) should assure safety for the pedestrian. One of the critical tasks is to determine if the pedestrian is crossing the road in the path of the ego-vehicle, in order to issue the required alerts for the driver or even safety breaking action. In this paper, we investigate the use of 2D pose estimators to determine the direction and speed of the pedestrian crossing the road in front of a vehicle. Pose estimation of body parts, such as right eye, left knee, right foot, etc… is used for determining the pedestrian orientation while tracking these key points between frames is used to determine the pedestrian speed. The pedestrian orientation and speed are the two required elements for the basic path estimation.
Technical Paper

GPU Implementation for Automatic Lane Tracking in Self-Driving Cars

2019-04-02
2019-01-0680
The development of efficient algorithms has been the focus of automobile engineers since self-driving cars become popular. This is due to the potential benefits we can get from self-driving cars and how they can improve safety on our roads. Despite the good promises that come with self-driving cars development, it is way behind being a perfect system because of the complexity of our environment. A self-driving car must understand its environment before it makes decisions on how to navigate, and this might be difficult because the changes in our environment is non-deterministic. With the development of computer vision, some key problems in intelligent driving have been active research areas. The advances made in the field of artificial intelligence made it possible for researchers to try solving these problems with artificial intelligence. Lane detection and tracking is one of the critical problems that need to be effectively implemented.
Journal Article

Time-Dependent Reliability-Based Design Optimization of Vibratory Systems

2017-03-28
2017-01-0194
A methodology for time-dependent reliability-based design optimization of vibratory systems with random parameters under stationary excitation is presented. The time-dependent probability of failure is computed using an integral equation which involves up-crossing and joint up-crossing rates. The total probability theorem addresses the presence of the system random parameters and a sparse grid quadrature method calculates the integral of the total probability theorem efficiently. The sensitivity derivatives of the time-dependent probability of failure with respect to the design variables are computed using finite differences. The Modified Combined Approximations (MCA) reanalysis method is used to reduce the overall computational cost from repeated evaluations of the system frequency response or equivalently impulse response function. The method is applied to the shape optimization of a vehicle frame under stochastic loading.
Technical Paper

Dimension Study of Punched Hole Using Conical Tipped Punches

2016-04-05
2016-01-0364
Dimensional problems for punched holes on a sheet metal stamping part include being undersized and oversized. Some important relationships among tools and products, such as the effect of conical punch tip angle, are not fully understood. To study this effect, sheets of AA6016 aluminum and BH210 steel were punched by punches with different conical tip angles. The test method and test results are presented. The piercing force and withdrawing force when using conical punches were also studied. The results indicate that the oversize issue for a punched hole in a stamped panel is largely due to the combination of the conical tip effect and the stretching-release effect.
Journal Article

Scuffing Test Rig for Piston Wrist Pin and Pin Bore

2015-04-14
2015-01-0680
In practice, the piston wrist pin is either fixed to the connecting rod or floats between the connecting rod and the piston. The tribological behavior of fixed wrist pins have been studied by several researchers, however there have been few studies done on the floating wrist pin. A new bench rig has been designed and constructed to investigate the tribological behavior between floating pins and pin bore bearings. The experiments were run using both fixed pins and floating pins under the same working conditions. It was found that for fixed pins there was severe damage on the pin bore in a very short time (5 minutes) and material transfer occurs between the wrist pin and pin bore; however, for the floating pin, even after a long testing time (60 minutes) there was minimal surface damage on either the pin bore or wrist pin.
Technical Paper

Towards Improved Automotive HVAC Control through Internet Connectivity

2015-04-14
2015-01-0370
Traditional Heat Ventilation and Air Conditioning (HVAC) control systems are reactive by design and largely dependent on the on-board sensory data available on a Controller Area Network (CAN) bus. The increasingly common Internet connectivity offered in today's vehicles, through infotainment and telematic systems, makes data available that may be used to improve current HVAC systems. This includes real-time outside relative humidity, ambient temperature, precipitation (i.e., rain, snow, etc.), and weather forecasts. This data, combined with position and route information of the vehicle, may be used to provide a more comfortable experience to vehicle occupants in addition to improving driver visibility through more intelligent humidity, and defrost control. While the possibility of improving HVAC control utilizing internet connectivity seems obvious, it is still currently unclear as to what extent.
Journal Article

A Methodology for Design Decisions using Block Diagrams

2013-04-08
2013-01-0947
Our recent work has shown that representation of systems using a reliability block diagram can be used as a decision making tool. In decision making, we called these block diagrams decision topologies. In this paper, we generalize the results and show that decision topologies can be used to make many engineering decisions and can in fact replace decision analysis for most decisions. We also provide a meta-proof that the proposed method using decision topologies is entirely consistent with decision analysis at the limit. The main advantages of the method are that (1) it provides a visual representation of a decision situation, (2) it can easily model tradeoffs, (3) it can incorporate binary attributes, (4) it can model preferences with limited information, and (5) it can be used in a low-fidelity sense to quickly make a decision.
Technical Paper

Effect of Head and Neck Anthropometry on the Normal Range of Motion of the Cervical Spine of Prepubescent Children

2009-06-09
2009-01-2302
Application of cervical spine range of motion data and related anthropometric measures of the head and neck include physical therapy, product design, and computational modeling. This study utilized the Cervical Range of Motion device (CROM) to define the normal range of motion of the cervical spine for subjects five (5) through ten (10) years of age. And, the data was collected and analyzed with respect to anatomical measures such as head circumference, face height, neck length, and neck circumference. This study correlates these static anthropometric measures to the kinematic measurement of head flexion, extension, lateral extension, and rotation.
Technical Paper

Improving Time-To-Collision Estimation by IMM Based Kalman Filter

2009-04-20
2009-01-0162
In a CAS system, the distance and relative velocity between front and host vehicles are estimated to calculate time-to-collision (TTC). The distance estimates by different methods will certainly include noise which should be removed to ensure the accuracy of TTC calculations. Kalman filter is a good tool to filter such type of noise. Nevertheless, Kalman filter is a model based filter, which means a correct model is important to get the good filtering results. Usually, a vehicle is either moving with a constant velocity (CV) or constant acceleration (CA) maneuvers. This means the distance data between front and host vehicles can be described by either constant velocity or constant acceleration model. In this paper, first, CV and CA models are used to design two Kalman filters and an interacting multiple model (IMM) is used to dynamically combine the outputs from two filters.
Journal Article

Offset Algorithm for Compound Angle Machining of Parts when Tool Motion is Unrestricted in Space

2008-04-14
2008-01-0246
Although the performance of CNC machines is accurate, unavoidable human errors at the part loading position have serious repercussions on engine performance. In the present paper the authors would like to develop an algorithm for error compensation when the tool movement is unrestricted in space. The new solution algorithm will be in terms of the known initial system variables such as the part loading errors, drill tool inclinations, location of spindle etc. This modified paper employs the same principles of inverse kinematics as done in the earlier paper wherein a faulty compound-hole angle axis in space caused by the translational and rotational errors at the part loading position is identified with an imaginary true axis in space by enforcing identity through a modified machine axes taking into effect inclination of the drill tool in space. In the absence of any specific application, this algorithm is verified on Solid Works a commercial CAD tool and found to be correct.
X