Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Virtual Methodology for Active Force Cancellation in Automotive Application Using Mass Imbalance & Centrifugal Force Generation (CFG) Principle

2024-04-09
2024-01-2343
A variety of structures resonate when they are excited by external forces at, or near, their natural frequencies. This can lead to high deformation which may cause damage to the integrity of the structure. There have been many applications of external devices to dampen the effects of this excitation, such as tuned mass dampers or both semi-active and active dampers, which have been implemented in buildings, bridges, and other large structures. One of the active cancellation methods uses centrifugal forces generated by the rotation of an unbalanced mass. These forces help to counter the external excitation force coming into the structure. This research focuses on active force cancellation using centrifugal forces (CFG) due to mass imbalance and provides a virtual solution to simulate and predict the forces required to cancel external excitation to an automotive structure. This research tries to address the challenges to miniaturize the CFG model for a body-on-frame truck.
Technical Paper

Low-Cost Open-Source Data Acquisition for High-Speed Cylinder Pressure Measurement with Arduino

2024-04-09
2024-01-2390
In-cylinder pressure measurement is an important tool in internal combustion engine research and development for combustion, cycle performance, and knock analysis in spark-ignition engines. In a typical laboratory setup, a sub crank angle resolved (typically between 0.1o and 0.5o) optical encoder is installed on the engine crankshaft, and a piezoelectric pressure transducer is installed in the engine cylinder. The charge signal produced by the transducer due to changes in cylinder pressure during the engine cycle is converted to voltage by a charge amplifier, and this analog voltage is read by a high-speed data acquisition (DAQ) system at each encoder trigger pulse. The high speed of engine operation and the need to collect hundreds of engine cycles for appropriate cycle-averaging requires significant processor speed and memory, making typical data acquisition systems very expensive.
Technical Paper

High Dimensional Preference Learning: Topological Data Analysis Informed Sampling for Engineering Decision Making

2024-04-09
2024-01-2422
Engineering design-decisions often involve many attributes which can differ in the levels of their importance to the decision maker (DM), while also exhibiting complex statistical relationships. Learning a decision-making policy which accurately represents the DM’s actions has long been the goal of decision analysts. To circumvent elicitation and modeling issues, this process is often oversimplified in how many factors are considered and how complicated the relationships considered between them are. Without these simplifications, the classical lottery-based preference elicitation is overly expensive, and the responses degrade rapidly in quality as the number of attributes increase. In this paper, we investigate the ability of deep preference machine learning to model high-dimensional decision-making policies utilizing rankings elicited from decision makers.
Technical Paper

Design and Simulation of Battery Enclosure for an Electric Vehicle Application

2024-04-09
2024-01-2738
Making a sturdy battery box or enclosure is one of the many challenging issues that the expansion of electrification entails. Many characteristics of an effective battery housing contribute to the safety of passengers and shield the battery from the harsh environment created by vibrations and shocks due to varying road profiles in the vehicle. This results in stress and deformations of different degrees. There is a need to understand and develop a correlation between structural performance and lightweight design of battery enclosure as this can increase the range of the drive and the life cycle of a battery pack. This paper investigates the following points: I) A conceptualized CAD model of battery enclosure is developed to understand the design parameters such as utilization of different material for strength and structural changes for performance against vibration and strength.
Technical Paper

Algorithm to Calibrate Catalytic Converter Simulation Light-Off Curve

2024-04-09
2024-01-2630
Spark ignition engines utilize catalytic converters to reform harmful exhaust gas emissions such as carbon monoxide, unburned hydrocarbons, and oxides of nitrogen into less harmful products. Aftertreatment devices require the use of expensive catalytic metals such as platinum, palladium, and rhodium. Meanwhile, tightening automotive emissions regulations globally necessitate the development of high-performance exhaust gas catalysts. So, automotive manufactures must balance maximizing catalyst performance while minimizing production costs. There are thousands of different recipes for catalytic converters, with each having a different effect on the various catalytic chemical reactions which impact the resultant tailpipe gas composition. In the development of catalytic converters, simulation models are often used to reduce the need for physical parts and testing, thus saving significant time and money.
Technical Paper

Amplitude Method for Detecting Debonding in Stack Bond Adhesive

2024-03-13
2024-01-5033
Adhesively bonded joints have been applied in the automotive industry for the past few decades due to their advantages such as higher fatigue resistance, light weight, capability of joining dissimilar materials, good energy absorption, and high torsional stiffness for overall body structure. They also provide an effective seal against noise and vibration at a low cost. There exists the challenge of defining the fatigue characteristics of adhesive joints under cyclic loading conditions, and conventional methods have limitations in detecting the crack initiation of a bonded joint. This study introduces a method of detecting crack initiation by using the frequency method. It is found that stiffness change in the system is highly correlated to change in natural frequencies. By monitoring the change in natural frequencies, the crack initiation can be detected.
Technical Paper

Tooth Mesh Characterization of Spur Gear Pairs with Surface Pitting Damage

2023-04-11
2023-01-0458
A finite element/contact mechanics (FE/CM) method is used to determine the tooth contact forces, static transmission error, and tooth pair stiffnesses for spur gear pairs that have pitting damage. The pitting damage prevents portions of the tooth surface from carrying load, which results in meaningfully different contact pressure distribution on the gear teeth and deformations at the mesh. Pits of elliptical shape are investigated. Parametric analyses are used to investigate the effect of pit width (along the tooth face) and height (along the tooth profile) on the gear tooth mesh interface. Pitting damage increases static transmission error and decreases tooth pair stiffness. Tooth contact forces differ only in the portions of the mesh cycle when multiple pairs of teeth are in contact and share the transmitted load. Pitting damage does not change the loads when only a single pair of teeth are in contact.
Technical Paper

Topological Data Analysis for Navigation in Unstructured Environments

2023-04-11
2023-01-0088
Autonomous vehicle navigation, both global and local, makes use of large amounts of multifactorial data from onboard sensors, prior information, and simulations to safely navigate a chosen terrain. Additionally, as each mission has a unique set of requirements, operational environment and vehicle capabilities, any fixed formulation for the cost associated with these attributes is sub-optimal across different missions. Much work has been done in the literature on finding the optimal cost definition and subsequent mission pathing given sufficient measurements of the preference over the mission factors. However, obtaining these measurements can be an arduous and computationally expensive task. Furthermore, the algorithms that utilize this large amount of multifactorial data themselves are time consuming and expensive.
Journal Article

Development of Digital Shearography for Dual Sensitivity Simultaneous Measurement Using Carrier Frequency Spatial Phase Shift Technology

2023-04-11
2023-01-0068
Digital shearography has many advantages, such as full-field, non-contact, high sensitivity, and good robustness. It was widely used to measure the deformation and strain of materials, also to the application of nondestructive testing (NDT). However, most digital sherography applications can only work in one field of view per measurement, and some small defects may not be detected as a result. Multiple measurements of different fields of view are needed to solve this issue, which will increase the measurement time and cost. The difficulty in performing multiple measurements may also increase for cases where the loading is not repeatable. Therefore, a system capable of measuring dual fields of view at the same time is necessary. The carrier frequency spatial phase shift method may be a good candidate to reach this goal because it can simultaneously record phase information of multiple images, e.g. two speckle interferograms with different fields of view.
Technical Paper

EV Battery Power Management for Supplying Smart Loads in Power Distribution Systems

2022-03-29
2022-01-0171
The number of EVs are increasing in power distribution systems every day. This research analyses different penetration levels of electric vehicles in power distribution systems to provide stable energy for smart devices and observes its impacts on operational costs and environmental emissions. The supply of EV power is determined based on smart device consumption by optimal energy management of EV batteries so that both the utilities and the car owner get benefits. Utilities can save energy by reducing system loss, while EV owners can earn money by selling it to utilities at their convenient time for smart device operations. The PG&E 69-bus distribution system is used for the simulation and case studies. Case studies in this research show how the power management of EV's batteries charging and discharging characteristics benefits both utilities and EV owners. The uncertainty of the driving pattern of EVs is also considered in the research to get more accurate results.
Technical Paper

Fatigue Endurance Limit of Fasteners in Automotive Application

2022-03-29
2022-01-0260
Fasteners, commonly used in automotive industry, play an important role in the safety and reliability of the vehicle structural system. In practical application, bolted joints would never undergo fully reversed loading; there always will be positive mean stress on bolt. The mean stress has little influence on the fatigue life if the maximum stress is lower than a threshold which is near the yield stress of the bolt. However, when the sum of the mean stress and the stress amplitude exceeds the threshold, the endurance limit stress amplitude decreases fast as the mean stress increases. The purpose of this paper is to research the fatigue endurance limit of a fastener and establish the threshold for safe design in automotive application. In order to obtain the fatigue endurance limit at different mean stress levels, various mechanical tests were performed on M12x1.75 and M16x1.5 Class 10.9 fasteners using MTS test systems.
Technical Paper

Large-Angle Full-Field Strain Measurement of Small-Sized Objects Based on the Multi-Camera DIC Test System

2022-03-29
2022-01-0274
Digital Image Correlation (DIC) technology is a powerful tool in the field of experimental mechanics to obtain the full-field deformation/strain information of an object. It has been rapidly applied in industry in recent years. However, for the large-angle full-field strain measurement of small-sized cylindrical objects, it’s still a challenge to the DIC accurate measurement due to its small size and curved surface. In this paper, a measurement method based on the multi-camera DIC system is proposed to study the compressive performance of small-sized cylindrical materials. Three cameras form two stereo DIC measurement systems (1 and 2 cameras, and 2 and 3 cameras), each of which measures a part of the object. By calibrating three cameras at the same time, two stereos DIC coordinate systems can be unified to one coordinate system. Then match the two sets of DIC measurement data together to achieve large-angle measurement of the cylindrical surface.
Technical Paper

EV Battery Charger Impacts on Power Distribution Transformers Due to Harmonics

2022-03-29
2022-01-0750
Increasing the demand for EV charging has increased the burden and accretion of the power quality issues. Harmonic voltages and currents have a significant negative influence on power system components, specifically power transformers. The voltage and current harmonics created by EV chargers and their impacts on power transformers have been discussed in this paper, and an approach is proposed to reduce such harmonics in the system. For this purpose, firstly, the total harmonic distortion (THD) of a typical EV charger is evaluated. Then an analysis is performed utilizing Fast Fourier Transform (FTT) to extract individual harmonics. To this end, this paper addresses the power quality issues on the power transformers by implementing a passive filter. The harmonic voltages and currents were measured on different levels of charging loads. The simulation results show that more than 30% of total harmonic distortions were reduced to 1.16% using a passive filter.
Journal Article

Damage-Induced Dynamic Tooth Contact Forces in Spur Gears with Root Cracks

2022-03-29
2022-01-0642
A finite element/contact mechanics formulation is used to analyze the dynamic tooth forces that arise from damage-induced vibrations in spur gear pairs. Tooth root crack damage of varying sizes are analyzed for a wide range of speeds that include resonant gear speeds. The added localized compliance from tooth root crack damage leads to a re-distribution of the forces on the individual gear teeth in mesh. At speeds away from resonance, smaller dynamic forces occur on the damaged tooth and larger dynamic forces occur on the tooth that engages immediately after it. These dynamic tooth contact forces cause additional transient dynamic response in the gear pair. For certain speeds and sufficiently large tooth root cracks, the damage-induced dynamic response causes large enough vibration that tooth contact loss nonlinearity occurs. For some speeds near resonance, the damage-induced vibrations cause teeth that normally lose contact to remain in contact due to vibration.
Technical Paper

Fault Diagnosis and Prediction in Automotive Systems with Real-Time Data Using Machine Learning

2022-03-29
2022-01-0217
In the automotive industry, a Malfunction Indicator Light (MIL) is commonly employed to signify a failure or error in a vehicle system. To identify the root cause that has triggered a particular fault, a technician or engineer will typically run diagnostic tests and analyses. This type of analysis can take a significant amount of time and resources at the cost of customer satisfaction and perceived quality. Predicting an impending error allows for preventative measures or actions which might mitigate the effects of the error. Modern vehicles generate data in the form of sensor readings accessible through the vehicle’s Controller Area Network (CAN). Such data is generally too extensive to aid in analysis and decision making unless machine learning-based methods are used. This paper proposes a method utilizing a recurrent neural network (RNN) to predict an impending fault before it occurs through the use of CAN data.
Technical Paper

EV Penetration for Minimizing Power System Emissions

2021-04-06
2021-01-0788
This work illustrates the potential of Electric Vehicles (EVs) as a grid support tool that will lower carbon emissions from both the energy production sector and the transportation sector. EVs can provide peak shaving power to the grid while discharging and valley filling power while charging to flatten the total load curve of a distribution system. The idea is called Vehicle to Grid (V2G). Flattening the load curve will allow utility providers to delay upgrading, or the purchase of new power generation stations, as well as best utilize renewable energy resources that may be uncontrollable in nature. Electrical energy production and transportation combined accounted for 2,534 million metric tons of carbon dioxide emissions in the US in 2019. Utilizing EVs for transportation as well as grid support will decrease this figure in each sector. This technology may pave the way to cleaner, more reliable, cost effective energy systems.
Technical Paper

Design and Analysis of an Acrylic Front of a Novel Mechanical Highway Billboard

2021-04-06
2021-01-0832
Billboards are an effective instrument of advertisement at areas with high traffic flow such as alongside highways. They provide information to drivers for food, fuel, lodging, attractions, etc. A novel mechanical billboard has been conceived recently which contains rolling tubes to alternate as many as twelve printed signs. It has the advantages of both flexibility and cost-effectiveness. A container is built to protect the mechanism from the weather elements. To allow the displayed messages to be visible, a transparent acrylic front is installed. Due to its mechanical properties, it is a challenging task in designing a functional acrylic front. A reinforcement is selected to counter the weak flexural rigidity of the front during winds. On the other hand, the reinforced acrylic front must maintain sufficient visibility.
Journal Article

Decision-Making for Autonomous Mobility Using Remotely Sensed Terrain Parameters in Off-Road Environments

2021-04-06
2021-01-0233
Off-road vehicle operation requires constant decision-making under great uncertainty. Such decisions are multi-faceted and range from acquisition decisions to operational decisions. A major input to these decisions is terrain information in the form of soil properties. This information needs to be propagated to path planning algorithms that augment them with other inputs such as visual terrain assessment and other sensors. In this sequence of steps, many resources are needed, and it is not often clear how best to utilize them. We present an integrated approach where a mission’s overall performance is measured using a multiattribute utility function. This framework allows us to evaluate the value of acquiring terrain information and then its use in path planning. The computational effort of optimizing the vehicle path is also considered and optimized. We present our approach using the data acquired from the Keweenaw Research Center terrains and present some results.
Technical Paper

The Study of the Effective Contact Area of Suction Cup

2021-04-06
2021-01-0298
As the industry moves further into the automotive age, the failure of the cup during the transportation of the parts during the assembly process is costly. Among them, the effective contact area of the suction cup could influence the significant availability of the pressure, which is necessary to investigate the truth. The essential objective for this research is trying to improve the effectiveness of the suction cups during gripers work in company’s industry. In this research, the real work condition is simulated by the experimental setup to find the influence of the effective contact area. In this paper, the proper methodology to measure the effective area by testing different size cups under different conditions is described. The results are verified by the digital image correlation (DIC) technique.
Technical Paper

Application of Casting to Automotive ECU’s

2021-04-06
2021-01-0131
Casting is the ability to let users transfer their favorite videos, music, movies, etc. from their phone to a chosen display. This functionality has become very popular these days, and to the user, it is as simple as clicking a button. This “simple” task is a complex system that requires various independent sources to communicate efficiently and effectively to produce a robust and reliable output. The sending and receiving devices are required to be on the same network - which involves reliable and secure connection. This allows the sending of the URL of the chosen feature to the server provider, which will then connect to the receiver embedded electronics where the authentication process that protects Digital Rights Management (DRM) is established. In the era of developing autonomous and luxury vehicles, this technology has the potential to add a new dimension of in-vehicle entertainment that could come very close to the home experience.
X