Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Characterizing Galling Conditions in Sheet Metal Stamping

2024-04-09
2024-01-2856
Multiple experimental studies were performed on galling intiation for variety of tooling materials, coatings and surface treatments, sheet materials with various surface textures and lubrication. Majority of studies were performed for small number of samples in laboratory conditions. In this paper, the methodology of screening experiment using different combinations of tooling configurations and sheet material in the lab followed by the high volume small scale U-bend performed in the progressive die on the mechanical press is discussed. The experimental study was performed to understand the effect of the interface between the sheet metal and the die surface on sheet metal flow during stamping operations. Aluminum sheet AA5754 2.5mm thick was used in this experimentation. The sheet was tested in laboratory conditions by pulling between two flat insert with controllable clamping force and through the drawbead system with variable radii of the female bead.
Technical Paper

The Influence of Sample Geometry on the Mechanical Properties and Failure Mechanisms of 6111 Aluminum Alloy Tensile Specimens

2024-04-09
2024-01-2280
This research focuses on the commercial 6111 aluminum alloy as the subject of investigation. By designing tensile specimens with the same characteristic dimensions but varying fillet radii, the effects of fillet radius on the tensile properties and stress concentration effects of the aluminum alloy were studied through tensile testing and digital image correlation techniques. The results demonstrate that with an increase in fillet radius, the failure strength and stress distribution of the aluminum alloy specimens have both undergone alterations. This phenomenon can be attributed to the reduction of stress concentration at the fillet due to the larger fillet radius. Further verification through digital image correlation reaffirms that samples with a fillet radius of 10mm exhibit notable stress concentration effects at the fillet, while specimens with a fillet radius increased to 40mm display uniform plastic deformation across the parallel section.
Technical Paper

Optimal Control Co-Design of a Parallel Electric-Hydraulic Hybrid Vehicle

2024-04-09
2024-01-2154
This paper presents an optimal control co-design framework of a parallel electric-hydraulic hybrid powertrain specifically tailored for heavy-duty vehicles. A pure electric powertrain, comprising a rechargeable lithium-ion battery, a highly efficient electric motor, and a single or double-speed gearbox, has garnered significant attention in the automotive sector due to the increasing demand for clean and efficient mobility. However, the state-of-the-art has demonstrated limited capabilities and has struggled to meet the design requirements of heavy-duty vehicles with high power demands, such as a class 8 semi-trailer truck. This is especially evident in terms of a driving range on one battery charge, battery charging time, and load-carrying capacity. These challenges primarily stem from the low power density of lithium-ion batteries and the low energy conversion efficiency of electric motors at low speeds.
Technical Paper

Low-Cost Open-Source Data Acquisition for High-Speed Cylinder Pressure Measurement with Arduino

2024-04-09
2024-01-2390
In-cylinder pressure measurement is an important tool in internal combustion engine research and development for combustion, cycle performance, and knock analysis in spark-ignition engines. In a typical laboratory setup, a sub crank angle resolved (typically between 0.1o and 0.5o) optical encoder is installed on the engine crankshaft, and a piezoelectric pressure transducer is installed in the engine cylinder. The charge signal produced by the transducer due to changes in cylinder pressure during the engine cycle is converted to voltage by a charge amplifier, and this analog voltage is read by a high-speed data acquisition (DAQ) system at each encoder trigger pulse. The high speed of engine operation and the need to collect hundreds of engine cycles for appropriate cycle-averaging requires significant processor speed and memory, making typical data acquisition systems very expensive.
Technical Paper

Design and Simulation of Battery Enclosure for an Electric Vehicle Application

2024-04-09
2024-01-2738
Making a sturdy battery box or enclosure is one of the many challenging issues that the expansion of electrification entails. Many characteristics of an effective battery housing contribute to the safety of passengers and shield the battery from the harsh environment created by vibrations and shocks due to varying road profiles in the vehicle. This results in stress and deformations of different degrees. There is a need to understand and develop a correlation between structural performance and lightweight design of battery enclosure as this can increase the range of the drive and the life cycle of a battery pack. This paper investigates the following points: I) A conceptualized CAD model of battery enclosure is developed to understand the design parameters such as utilization of different material for strength and structural changes for performance against vibration and strength.
Technical Paper

Minimizing Steady-State Testing Time in an Engine Dynamometer Laboratory

2023-04-11
2023-01-0209
In the automotive industry, performing steady-state tests on an internal combustion engine can be a time consuming and costly process, but it is necessary to ensure the engine meets performance and emissions criteria set by the manufacturer and regulatory agencies. Any measures that can reduce the amount of time required to complete these testing campaigns provides significant benefits to manufacturers. The purpose of this work is then to develop a systematic approach to minimize the time required to conduct a steady-state engine test campaign using a Savitsky-Golay filter to calculate measured signal gradients for continuous steady-state detection. Experiments were conducted on an Armfield CM11-MKII Gasoline Engine test bench equipped with a 1.2L 3-cylinder Volkswagen EA111 R3 engine. The test bench utilizes throttle position control and an eddy current dynamometer braking system with automatic PID control of engine speed.
Journal Article

A Subdomain Approach for Uncertainty Quantification of Long Time Horizon Random Processes

2023-04-11
2023-01-0083
This paper addresses the uncertainty quantification of time-dependent problems excited by random processes represented by Karhunen Loeve (KL) expansion. The latter expresses a random process as a series of terms involving the dominant eigenvalues and eigenfunctions of the process covariance matrix weighted by samples of uncorrelated standard normal random variables. For many engineering appli bn vb nmcations, such as random vibrations, durability or fatigue, a long-time horizon is required for meaningful results. In this case however, a large number of KL terms is needed resulting in a very high computational effort for uncertainty propagation. This paper presents a new approach to generate time trajectories (sample functions) of a random process using KL expansion, if the time horizon (duration) is much larger than the process correlation length.
Technical Paper

Event-Triggered Model Predictive Control for Autonomous Vehicle with Rear Steering

2022-03-29
2022-01-0877
This paper proposes a new nonlinear model predictive control (NMPC) for autonomous vehicle path tracking problem. The vehicle is equipped with active rear steering, allowing independent control of front and rear steering. Traditional NMPC, which runs at fixed sampling rate, has been shown to provide satisfactory control performance in this problem. However, the high throughput of NMPC limits its implementation in production vehicle. To address this issue, we propose a novel event-triggered NMPC formulation, where the NMPC is triggered to run only when the actual states deviate from prediction beyond certain threshold. In other words, the event-triggered NMPC will formulate and solve a constrained optimal control problem only if it is enabled by a trigger event. When NMPC is not triggered, the optimal control sequence computed from last NMPC instance is shifted to determine the control action.
Technical Paper

CAE Correlation of Sealing Pressure of a Press-in-Place Gasket

2021-04-06
2021-01-0299
The Press-in-Place (PIP) gasket is a static face seal with self-retaining feature, which is used for the mating surfaces of engine components to maintain the reliability of the closed system under various operating conditions. Its design allows it to provide enough contact pressure to seal the internal fluid as well as prevent mechanical failures. Insufficient sealing pressure will lead to fluid leakage, consequently resulting in engine failures. A test fixture was designed to simulate the clamp load and internal pressure condition on a gasket bolted joint. A sensor pad in combination with TEKSCAN equipment was used to capture the overall and local pressure distribution of the PIP gasket under various engine loading conditions. Then, the test results were compared with simulated results from computer models. Through the comparisons, it was found that gasket sealing pressure of test data and CAE data shows good correlations in all internal pressure cases when the bolt load was 500 N.
Technical Paper

Nonlinear System Identification of Variable Oil Pump for Model-Based Controls and Diagnostics

2021-04-06
2021-01-0392
This paper presents nonlinear system identification of a variable oil pump for model-based controls and diagnostics of advanced internal combustion engines. The variable oil pump offers great benefits over the conventional fixed displacement oil pump in terms of fuel efficiency and functional optimality. However, to fully benefit from the variable oil pump, an accurate mathematical model that describes its dynamic behavior is foundational to develop an accurate and robust oil pressure control and diagnostic. Toward this end, Hammerstein and Wiener models that consist of a nonlinear static block followed by a linear dynamic block and a linear dynamic block followed by a nonlinear static block, respectively are developed. Under different operating conditions (oil temperature and engine speed), the oil pressure (output) is measured with the multilevel duty cycle (input) of the flow control valve.
Journal Article

Prediction of Spark Timing to Achieve a Specified Torque Profile in Spark-Ignition Engines Using Time-Dependent Metamodeling

2021-04-06
2021-01-0238
The internal combustion engine is a source of unwanted vibration on the vehicle body. The unwanted vibration comes from forces on the engine mounts which depend on the engine torque during a transient maneuver. In particular, during a tip-in or a tip-out maneuver, different torque profiles result in different magnitudes of vibration. A desired engine torque shape can be thus obtained to minimize the unwanted vibration. The desired torque shape can be achieved by controlling a set of engine calibration parameters. This paper provides a methodology to determine the spark timing profile to achieve a desired engine torque profile during a tip-out maneuver. The spark timing profiles are described by a third-order polynomial as a function of time. A set of coefficients to define a third-order polynomial (design sites) are first generated using design of experiments (DOE).
Technical Paper

Reconciling Simultaneous Evolution of Ground Vehicle Capabilities and Operator Preferences

2020-04-14
2020-01-0172
An objective evaluation of ground vehicle performance is a challenging task. This is further exacerbated by the increasing level of autonomy, dynamically changing the roles and capabilities of these vehicles. In the context of decision making involving these vehicles, as the capabilities of the vehicles improve, there is a concurrent change in the preferences of the decision makers operating the vehicles that must be accounted for. Decision based methods are a natural choice when multiple conflicting attributes are present, however, most of the literature focuses on static preferences. In this paper, we provide a sequential Bayesian framework to accommodate time varying preferences. The utility function is considered a stochastic function with the shape parameters themselves being random variables. In the proposed approach, initially the shape parameters model either uncertain preferences or variation in the preferences because of the presence of multiple decision makers.
Technical Paper

Analysis of Sheet Metal Joining with Self-Piercing Riveting

2020-04-14
2020-01-0223
Self-piercing riveting (SPR) has been used in production to join sheet materials since the early 1990s. A large amount of experimental trial work was required in order to determine an appropriate combination of rivet and anvil design to fulfill the required joint parameters. The presented study is describing the methodology of SPR joint design based on numerical simulation and experimental methods of defining required simulation input parameters. The required inputs are the stress-strain curves of sheet materials and rivets for the range of strains taking place in the SPR joining process, parameters required for a fracture model for all involved materials, and friction parameters for all interfaces of SPR process. In the current study, the normalized Cockroft-Latham fracture criterion was used for predicting fracture. Custom hole and tube expansion tests were used for predicting fracture of the riveted materials and the rivet, respectively.
Technical Paper

Improved Wear Resistance of Austempered Gray Cast Iron Using Shot-Peening Treatment

2020-04-14
2020-01-1098
In this research, ball-on-plate reciprocating sliding wear tests were utilized on austempered and quench-tempered gray cast iron samples with and without shot-peening treatment. The wear volume loss of the gray cast iron samples with different heat treatment designs was compared under equivalent hardness. The phase transformation in the matrix was studied using metallurgical evaluation and hardness measurement. It was found that thin needle-like ferrite became coarse gradually with increasing austempering temperature and was converted into feather-like shape when using the austempering temperatures of 399°C (750°F). The residual stress on the surface and sub-surface before and after shot-peening treatment was analyzed using x-ray diffraction. Compressive residual stress was produced after shot-peening treatment and showed an increasing trend with austempering temperature.
Technical Paper

Development of a Novel Test System to Determine the Durability of RTV Gasket Material

2020-04-14
2020-01-1069
This paper describes a laboratory-based test system and procedure for determining the durability of RTV sealant with fretting movement. A test machine is described in which shear and tensile stress-generating displacements at room temperature and temperature of 100°C are produced to load an RTV seal. The test system utilizes an air pressurized hollow cylinder with a cap sealed by RTV sealant on a reciprocating test rig. An external air leakage monitoring system detects the health of the tested RTV seal. When air leakage occurs, the seal is determined to have failed. RTV sealant used in the test was fully cured at room temperature and then aged with engine oil. In the experiments, a total of 6 displacements were used to generate cycle/amplitude graphs for both shear and tensile modes. Failures were determined to be caused by the loss of adhesion in tensile mode, and by crack nucleation due to the special step design in shear mode.
Technical Paper

Tracking Panel Movement during Stamping Process Using Advanced Optical Technology

2020-04-14
2020-01-0541
Metal panels are comprehensively applied in the automotive industry. A significant issue with metal panels is the deflection when moving in the press line of the stamping process. Unpredictable deflection could result in the cut off of the press line. To control the deflection in a safe zone, finite element tools are used to simulate the panel transform process. However, the simulation requires experimental validation where conventional displacement measurement techniques could not satisfy the requirement of vast filed displacement and accuracy point tracking. In this study, multi-camera digital image correlation (DIC) systems have been developed to track the movement of panels during the press line of the stamping process. There are some advantages of applying the DIC system, including non-contact, full-field, high accuracy, and direct measurement techniques that provide the evaluation displacement of the metal panel and press line.
Journal Article

Efficient Surrogate-Based NVH Optimization of a Full Vehicle Using FRF Based Substructuring

2020-04-14
2020-01-0629
The computer simulation with the Finite Element (FE) code for the structural dynamics becomes more attractive in the industry. However, it normally takes a prohibitive amount of computation time when design optimization is performed with running a large-scale FE simulation many times. Exploiting Dynamic Structuring (DS) leads to alleviating the computational complexity since DS necessities iterative reanalysis of only the substructure(s) to be optimally designed. In this research, Frequency Response Function (FRF) based substructuring is implemented to realize the benefits of DS for fast single- and multi-objective evolutionary design optimization. Also, Differential Evolution (DE) is first combined with two sorting approaches of Non-dominated Sorting Genetic Algorithm II (NSGA-II) and Infeasibility Driven Evolutionary Algorithm (IDEA) for effective constrained single- and multi-objective evolutionary optimization.
Technical Paper

Improvements to a CFR Engine Three Pressure Analysis GT-Power Model for HCCI and SI Conditions

2020-01-24
2019-32-0608
While experimental data measured directly on the engine are very valuable, there is a limitation of what measurements can be made without modifying the engine or the process that is being investigated, such as cylinder temperature. In order to supplement the experimental results, a Three Pressure Analysis (TPA) GT-Power model of the Cooperative Fuel Research (CFR) engine was previously developed and validated for estimating cylinder temperature and residual fraction. However, this model had only been validated for normal and knocking spark ignition (SI) combustion with RON-like intake conditions (naturally aspirated, <52 °C). This work presents improvements made to the GT-Power model and the expansion of its use for HCCI combustion. The burn rate estimation sub-model was modified to allow for low temperature heat release estimation and compression ignition operation.
Technical Paper

Experimental Study of Springback (Side-Wall-Curl) of Sheet Metal based on the DBS System

2019-04-02
2019-01-1088
Springback is a common phenomenon in automotive manufacturing processes, caused by the elastic recovery of the internal stresses during unloading. A thorough understanding of springback is essential for the design of tools used in sheet metal forming operations. A DBS (Draw-bead Simulator) has been used to simulate the forming process for two different sheet metals: aluminum and steel. Two levels of pulling force and two die radii have been enforced to the experimental process to get different springback. Also, the Digital Image Correlation (DIC) system has been adopted to capture the sheet contour and measure the amount of side-wall-curl (sheet springback) after deformation. This paper presents the influence of the material properties, force, and die radius on the deformation and springback after forming. A thorough understanding of this phenomenon is essential, seeing that any curvature in the part wall can affect quality and sustainability.
Technical Paper

Experimental Drawbeads Design Research

2019-04-02
2019-01-1087
In order to constrain the restraining force and control the speed of metal flow, drawbeads are widely used in industry. They prevent wrinkling or necking in formed panels, reduce the binder force, and minimize the usage of sheet metal to make a part. Different drawbead configurations can satisfy various stamping production. Besides local design of drawbeads, other factors like pulling directions, binder angles and single or multiple beads play an important role too. Moreover, it was found that the same beads configuration can own a different rate of change of pulling force on different gaps by experience. In this paper, to study the effect of each factor, the Aluminum and Steel sheet metals were tested to obtain the pulling force as they passed through a draw bead. Three gap cases between a male and a female beads are set to figure out the trend of pulling force.
X