Refine Your Search

Topic

Author

Search Results

Technical Paper

Virtual Methodology for Active Force Cancellation in Automotive Application Using Mass Imbalance & Centrifugal Force Generation (CFG) Principle

2024-04-09
2024-01-2343
A variety of structures resonate when they are excited by external forces at, or near, their natural frequencies. This can lead to high deformation which may cause damage to the integrity of the structure. There have been many applications of external devices to dampen the effects of this excitation, such as tuned mass dampers or both semi-active and active dampers, which have been implemented in buildings, bridges, and other large structures. One of the active cancellation methods uses centrifugal forces generated by the rotation of an unbalanced mass. These forces help to counter the external excitation force coming into the structure. This research focuses on active force cancellation using centrifugal forces (CFG) due to mass imbalance and provides a virtual solution to simulate and predict the forces required to cancel external excitation to an automotive structure. This research tries to address the challenges to miniaturize the CFG model for a body-on-frame truck.
Technical Paper

Optimal Control Co-Design of a Parallel Electric-Hydraulic Hybrid Vehicle

2024-04-09
2024-01-2154
This paper presents an optimal control co-design framework of a parallel electric-hydraulic hybrid powertrain specifically tailored for heavy-duty vehicles. A pure electric powertrain, comprising a rechargeable lithium-ion battery, a highly efficient electric motor, and a single or double-speed gearbox, has garnered significant attention in the automotive sector due to the increasing demand for clean and efficient mobility. However, the state-of-the-art has demonstrated limited capabilities and has struggled to meet the design requirements of heavy-duty vehicles with high power demands, such as a class 8 semi-trailer truck. This is especially evident in terms of a driving range on one battery charge, battery charging time, and load-carrying capacity. These challenges primarily stem from the low power density of lithium-ion batteries and the low energy conversion efficiency of electric motors at low speeds.
Technical Paper

Amplitude Method for Detecting Debonding in Stack Bond Adhesive

2024-03-13
2024-01-5033
Adhesively bonded joints have been applied in the automotive industry for the past few decades due to their advantages such as higher fatigue resistance, light weight, capability of joining dissimilar materials, good energy absorption, and high torsional stiffness for overall body structure. They also provide an effective seal against noise and vibration at a low cost. There exists the challenge of defining the fatigue characteristics of adhesive joints under cyclic loading conditions, and conventional methods have limitations in detecting the crack initiation of a bonded joint. This study introduces a method of detecting crack initiation by using the frequency method. It is found that stiffness change in the system is highly correlated to change in natural frequencies. By monitoring the change in natural frequencies, the crack initiation can be detected.
Journal Article

Accelerating In-Vehicle Network Intrusion Detection System Using Binarized Neural Network

2022-03-29
2022-01-0156
Controller Area Network (CAN), the de facto standard for in-vehicle networks, has insufficient security features and thus is inherently vulnerable to various attacks. To protect CAN bus from attacks, intrusion detection systems (IDSs) based on advanced deep learning methods, such as Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN), have been proposed to detect intrusions. However, those models generally introduce high latency, require considerable memory space, and often result in high energy consumption. To accelerate intrusion detection and also reduce memory requests, we exploit the use of Binarized Neural Network (BNN) and hardware-based acceleration for intrusion detection in in-vehicle networks. As BNN uses binary values for activations and weights rather than full precision values, it usually results in faster computation, smaller memory cost, and lower energy consumption than full precision models.
Technical Paper

EV Battery Power Management for Supplying Smart Loads in Power Distribution Systems

2022-03-29
2022-01-0171
The number of EVs are increasing in power distribution systems every day. This research analyses different penetration levels of electric vehicles in power distribution systems to provide stable energy for smart devices and observes its impacts on operational costs and environmental emissions. The supply of EV power is determined based on smart device consumption by optimal energy management of EV batteries so that both the utilities and the car owner get benefits. Utilities can save energy by reducing system loss, while EV owners can earn money by selling it to utilities at their convenient time for smart device operations. The PG&E 69-bus distribution system is used for the simulation and case studies. Case studies in this research show how the power management of EV's batteries charging and discharging characteristics benefits both utilities and EV owners. The uncertainty of the driving pattern of EVs is also considered in the research to get more accurate results.
Journal Article

Quantum Explanations for Interference Effects in Engineering Decision Making

2022-03-29
2022-01-0215
Engineering practice routinely involves decision making under uncertainty. Much of this decision making entails reconciling multiple pieces of information to form a suitable model of uncertainty. As more information is collected, one expectedly makes better and better decisions. However, conditional probability assessments made by human decision makers, as new information arrives does not always follow expected trends and instead exhibits inconsistencies. Understanding them is necessary for a better modeling of the cognitive processes taking place in their mind, whether it be the designer or the end-user. Doing so can result in better products and product features. Quantum probability has been used in the literature to explain many commonly observed deviations from the classical probability such as: question order effect, response replicability effect, Machina and Ellsberg paradoxes and the effect of positive and negative interference between events.
Technical Paper

Rule-Based Power Management Strategy of Electric-Hydraulic Hybrid Vehicles: Case Study of a Class 8 Heavy-Duty Truck

2022-03-29
2022-01-0736
Mobility in the automotive and transportation sectors has been experiencing a period of unprecedented evolution. A growing need for efficient, clean and safe mobility has increased momentum toward sustainable technologies in these sectors. Toward this end, battery electric vehicles have drawn keen interest and their market share is expected to grow significantly in the coming years, especially in light-duty applications such as passenger cars. Although the battery electric vehicles feature high performance and zero tailpipe emission characteristics, economic and technical issues such as battery cost, driving range, recharging time and infrastructure remain main hurdles that need to be fully addressed. In particular, the low power density of the battery limits its broad adoption in heavy-duty applications such as class 8 semi-trailer trucks due to the required size and weight of the battery and electric motor.
Technical Paper

Analyzing the Impact of Electric Vehicles on Power Losses and Voltage Profile in Power Distribution Systems

2022-03-29
2022-01-0748
As the number of electric vehicles (EVs) within society rapidly increase, the concept of maximizing its efficiency within the electric smart grid becomes crucial. This research presents the impacts of integrating EV charging infrastructures within a smart grid through a vehicle to grid (V2G) program. It also observes the circulation of electric charge within the system so that the electric grid does not become exhausted during peak hours. This paper will cover several different case studies and will analyze the best and worst scenarios for the power losses and voltage profiles in the power distribution system. Specifically, we seek to find the optimal location as well as the ideal number of EVs in the distribution system while minimizing its power losses and optimizing its voltage profile. Verification of the results are primarily conducted using GUIs created on MATLAB.
Technical Paper

EV Penetration for Minimizing Power System Emissions

2021-04-06
2021-01-0788
This work illustrates the potential of Electric Vehicles (EVs) as a grid support tool that will lower carbon emissions from both the energy production sector and the transportation sector. EVs can provide peak shaving power to the grid while discharging and valley filling power while charging to flatten the total load curve of a distribution system. The idea is called Vehicle to Grid (V2G). Flattening the load curve will allow utility providers to delay upgrading, or the purchase of new power generation stations, as well as best utilize renewable energy resources that may be uncontrollable in nature. Electrical energy production and transportation combined accounted for 2,534 million metric tons of carbon dioxide emissions in the US in 2019. Utilizing EVs for transportation as well as grid support will decrease this figure in each sector. This technology may pave the way to cleaner, more reliable, cost effective energy systems.
Technical Paper

Human Body Orientation from 2D Images

2021-04-06
2021-01-0082
This work presents a method to estimate the human body orientation using 2D images from a person view; the challenge comes from the variety of human body poses and appearances. The method utilizes OpenPose neural network as a human pose detector module and depth sensing module. The modules work together to extract the body orientation from 2D stereo images. OpenPose is proven to be efficient in detecting human body joints, defined by COCO dataset, OpenPose can detect the visible body joints without being affected by backgrounds or other challenging factors. Adding the depth data for each point can produce rich information to the process of 3D construction for the detected humans. This 3D point’s setup can tell more about the body orientation and walking direction for example. The depth module used in this work is the ZED camera stereo system which uses CUDA for high performance depth computation.
Technical Paper

Nonlinear System Identification of Variable Oil Pump for Model-Based Controls and Diagnostics

2021-04-06
2021-01-0392
This paper presents nonlinear system identification of a variable oil pump for model-based controls and diagnostics of advanced internal combustion engines. The variable oil pump offers great benefits over the conventional fixed displacement oil pump in terms of fuel efficiency and functional optimality. However, to fully benefit from the variable oil pump, an accurate mathematical model that describes its dynamic behavior is foundational to develop an accurate and robust oil pressure control and diagnostic. Toward this end, Hammerstein and Wiener models that consist of a nonlinear static block followed by a linear dynamic block and a linear dynamic block followed by a nonlinear static block, respectively are developed. Under different operating conditions (oil temperature and engine speed), the oil pressure (output) is measured with the multilevel duty cycle (input) of the flow control valve.
Technical Paper

Defining the Boundary Conditions of the CFR Engine under MON Conditions, and Evaluating Chemical Kinetic Predictions at RON and MON for PRFs

2021-04-06
2021-01-0469
Expanding upon the authors’ previous work which utilized a GT-Power model of the Cooperative Fuels Research (CFR) engine under Research Octane Number (RON) conditions, this work defines the boundary conditions of the CFR engine under Motored Octane Number (MON) test conditions. The GT-Power model was validated against experimental CFR engine data for primary reference fuel (PRF) blends between 60 and 100 under standard MON conditions, defining the full range of interest of MON for gasoline-type fuels. The CFR engine model utilizes a predictive turbulent flame propagation sub-model, and a chemical kinetic solver for the end-gas chemistry. The validation was performed simultaneously for thermodynamic and chemical kinetic parameters to match in-cylinder pressure conditions, burn rate, and knock point prediction with experimental data, requiring only minor modifications to the flame propagation model from previous model iterations.
Technical Paper

A Method of Filter Implementation Using Heterogeneous Computing System for Driver Health Monitoring

2021-04-06
2021-01-0103
Research in any field of study requires analysis and comparisons or real-time predictions to extract useful information. To prove that the results have practical potential, various filtering techniques and methodologies should be designed and implemented. Filters being a class of signal processing helps innovate new technologies with various kinds of outcomes, using filters there are always various methods to solve a problem. Considering the current COVID-19 situation, researchers are working on sequencing the novel coronavirus and the genomes of people afflicted with COVID-19 using CPUs and GPUs along with various filtering techniques. In this paper we are using a method of filter implementation to collect raw heart rate data samples from fingertip and ear lobe and process those results on CPUs and GPUs. Our method of implementation to collect raw heart rate data is using a photoplethysmography method.
Technical Paper

Pedestrian Orientation Estimation Using CNN and Depth Camera

2020-04-14
2020-01-0700
This work presents a method for estimating human body orientation using a combination of convolutional neural network (CNN) and stereo camera in real time. The approach uses the CNN model to predict certain human body keypoints then transforms these points into a 3D space using the stereo vision system to estimate the body orientations. The CNN module is trained to estimate the shoulders, the neck and the nose positions, detecting of three points is required to confirm human detection and provided enough data to translate the points into 3D space.
Technical Paper

EV Penetration Impacts on Environmental Emissions and Operational Costs of Power Distribution Systems

2020-04-14
2020-01-0973
This research assesses the integration of different levels of electric vehicles (EVs) in the distribution system and observes its impacts on environmental emissions and power system operational costs. EVs can contribute to reducing the environmental emission from two different aspects. First, by replacing the traditional combustion engine cars with EVs for providing clean and environment friendly transportation and second, by integrating EVs in the distribution system through the V2G program, by providing power to the utility during peak hours and reducing the emission created by hydrocarbon dependent generators. The PG&E 69-bus distribution system (DS) is used to simulate the integration of EVs and to perform energy management to assess the operational costs and emissions. The uncertainty of driving patterns of EVs are considered in this research to get more accurate results.
Technical Paper

Development of a Novel Test System to Determine the Durability of RTV Gasket Material

2020-04-14
2020-01-1069
This paper describes a laboratory-based test system and procedure for determining the durability of RTV sealant with fretting movement. A test machine is described in which shear and tensile stress-generating displacements at room temperature and temperature of 100°C are produced to load an RTV seal. The test system utilizes an air pressurized hollow cylinder with a cap sealed by RTV sealant on a reciprocating test rig. An external air leakage monitoring system detects the health of the tested RTV seal. When air leakage occurs, the seal is determined to have failed. RTV sealant used in the test was fully cured at room temperature and then aged with engine oil. In the experiments, a total of 6 displacements were used to generate cycle/amplitude graphs for both shear and tensile modes. Failures were determined to be caused by the loss of adhesion in tensile mode, and by crack nucleation due to the special step design in shear mode.
Journal Article

A Decision Based Mobility Model for Semi and Fully Autonomous Vehicles

2020-04-14
2020-01-0747
With the emergence of intelligent ground vehicles, an objective evaluation of vehicle mobility has become an even more challenging task. Vehicle mobility refers to the ability of a ground vehicle to traverse from one point to another, preferably in an optimal way. Numerous techniques exist for evaluating the mobility of vehicles on paved roads, both quantitatively and qualitatively, however, capabilities to evaluate their off-road performance remains limited. Whereas a vehicle’s off-road mobility may be significantly enhanced with intelligence, it also introduces many new variables into the decision making process that must be considered. In this paper, we present a decision analytic framework to accomplish this task. In our approach, a vehicle’s mobility is modeled using an operator’s preferences over multiple mobility attributes of concern. We also provide a method to analyze various operating scenarios including the ability to mitigate uncertainty in the vehicles inputs.
Journal Article

Prediction of Fuel Maps in Variable Valve Timing Spark Ignited Gasoline Engines Using Kriging Metamodels

2020-04-14
2020-01-0744
Creating a fuel map for simulation of an engine with Variable Valve Actuation (VVA) can be computationally demanding. Design of Experiments (DOE) and metamodeling is one way to address this issue. In this paper, we introduce a sequential process to generate an engine fuel map using Kriging metamodels which account for different engine characteristics such as load and fuel consumption at different operating conditions. The generated map predicts engine output parameters such as fuel rate and load. We first create metamodels to accurately predict the Brake Mean Effective Pressure (BMEP), fuel rate, Residual Gas Fraction (RGF) and CA50 (Crank Angle for 50% Heat Release after top dead center). The last two quantities are used to ensure acceptable combustion. The metamodels are created sequentially to ensure acceptable accuracy is achieved with a small number of simulations.
Journal Article

A Multi-Resonant Speed Piezoelectric Beam Device for Harvesting Energy from Vehicle Wheels

2020-04-14
2020-01-1236
This work analyzes a cantilevered piezoelectric beam device for harvesting energy from the simultaneous rotation and translational vibration of vehicle wheels. The device attaches to the wheel rim so that it displaces tangentially during operation. A lumped-parameter analytical model for the coupled electromechanical system is derived. The device has one natural frequency that is speed-dependent because of centripetal acceleration affecting the total stiffness of the device. Even though the device has one natural frequency, it experiences three resonances as the rotation speed varies. One resonance occurs when the rotation speed coincides with the speed-dependent natural frequency of the device. The other two resonances are associated with excitations from the vibration of the vehicle wheel. The device’s parameters are chosen so that these three resonances occur when the wheel travels near 30 mph, 55 mph, and 70 mph.
Technical Paper

Modelling of a Discrete Variable Compression Ratio (VCR) System for Fuel Consumption Evaluation - Part 1: Model Development

2019-04-02
2019-01-0467
Given increasingly stringent emission targets, engine efficiency has become of foremost importance. While increasing engine compression ratio can lead to efficiency gains, it also leads to higher in-cylinder pressure and temperatures, thus increasing the risk of knock. One potential solution is the use of a Variable Compression Ratio system, which is capable of exploiting the advantages coming from high compression ratio while limiting its drawbacks by operating at low engine loads with a high compression ratio, and at high loads with a low compression ratio, where knock could pose a significant threat. This paper describes the design of a model for the evaluation of fuel consumption for an engine equipped with a VCR system over representative drive cycles. The model takes as inputs; a switching time for the VCR system, the vehicle characteristics, engine performance maps corresponding to two different compression ratios, and a drive cycle.
X