Refine Your Search

Search Results

Viewing 1 to 16 of 16
Technical Paper

Steady State Characterization of Arcing in 540 V dc Distribution Systems

2017-09-19
2017-01-2035
As applications in aerospace, transportation and data centers are faced with increased electric power consumption, their dc operating voltages have increased to reduce cable weight and to improve efficiency. Electric arcs in these systems still cause dangerous fault conditions and have garnered more attention in recent years. Arcs can be classified as either low impedance or high impedance arcs and both can cause insulation damage and fires. Low impedance arcs release lots of energy when high voltage becomes nearly shorted to ground. High impedance arcs can occur when two current-carrying electrodes are separated, either by vibration of a loose connection or by cables snapping. The high impedance arc decreases load current due to a higher equivalent load impedance seen by the source. This complicates the differentiation of a high impedance arc fault from normal operation.
Technical Paper

Evaluation of DIC Based Forming Limit Curve Methods at Various Temperatures of Aluminum Alloys for Automotive Applications

2017-03-28
2017-01-0309
Aluminum alloys are increasingly utilized in automotive body panels and crash components to reduce weight. Accurately assessing formability of the sheet metal can reduce design iteration and tooling tryouts to obtain the desired geometry in aluminum stampings. The current ISO forming limit curve (FLC) procedure is a position dependent technique which produces the FLC based on extrapolation at the crack location. As aluminum sheet metal use increases in manufacturing, accurate determination of the forming limits of this material will be necessary prior to production. New time dependent methods using digital imaging correlation (DIC) account for variations in material behavior by continuously collecting strain data through the material necking point. This allows more accurate FLC determination that is necessary for efficient design in the automotive stamping industry.
Technical Paper

Effect of Flow on Helmholtz Resonator Acoustics: A Three-Dimensional Computational Study vs. Experiments

2011-05-17
2011-01-1521
The effectiveness of the Helmholtz resonator as a narrow band acoustic attenuator, particularly at low frequencies, makes it a highly desirable component in a wide variety of applications, including engine breathing systems. The present study investigates the influence of mean flow grazing over the neck of such a configuration on its acoustic performance both computationally and experimentally. Three-dimensional unsteady, turbulent, and compressible Navier-Stokes equations are solved by using the Pressure-Implicit-Splitting-of-Operators algorithm in STAR-CD to determine the time-dependent flow field. The introduction of mean flow in the main duct is shown to reduce the peak transmission loss and shift the fundamental resonance frequency to a higher value.
Technical Paper

Welding Characteristics in Deformation Resistance Welding

2008-04-14
2008-01-1137
Deformation Resistance Welding (DRW) is a process that employs resistance heating to raise the temperature of the materials being welded to the appropriate forging range, followed by shear deformation which increases the contacting surface area of the materials being welded. Because DRW is a new process, it became desirable to establish variable selection strategies which can be integrated into a production procedure. A factorial design of experiment was used to examine the influence of force, number of pulses, and weld cycles (heating/cooling time ratio) on the DRW process. Welded samples were tensile tested to determine their strength. Once tensile testing was complete, the resulting strengths were observed and compared to corresponding percent heat and percent reduction in thickness. Tensile strengths ranged from 107 kN to 22.2 kN. A relationship between the maximum current and the weld variables was established.
Technical Paper

Application of Conductive Heat Resistance Seam Welding for Joining a 7075-T6 Alloy and a 5754 Dissimilar Thickness Combination

1999-09-28
1999-01-3162
Conductive heat resistance seam welding (CHRSEW) is a new process developed at Edison Welding Institute for creating butt joints on aluminum sheet. The process uses conventional resistance seam welding equipment, and takes advantage of steel cover sheets on either side of the intended joint. Resulting joints are fusion in character, and can be manufactured at very high welding speeds (∼ 3 to 4 m/min). In this study, the conductive heat resistance seam welding process was extended to some new applications. These included joining a 7075-T6 alloy, and a dissimilar thickness 1- to 2-mm 5754 configuration. The former is generally considered unweldable by fusion methods, and is of considerable interest for aerospace applications. The latter is representative of a tailor welded blank for automotive applications. Resulting welds were evaluated using metallurgical examinations and mechanical testing.
Technical Paper

Laser Lap Welding of Galvanized Steel with No Gap

1999-09-28
1999-01-3145
Laser welding has long been evaluated as a joining technique for galvanized steels in a lap-joint configuration in the automotive industry. However, a problem associated with the low boiling point of zinc limits the application of the laser process in a lap-joint configuration. Zinc-coatings at the interface of the two coated sheets vaporize during welding and the volume of the zinc vapor expands rapidly. The venting of the zinc vapor from the weld pool causes expulsion of the molten metal during welding and a portion of zinc vapor remains in the weld as porosity after welding. To improve the weld quality of galvanized steel, many efforts have been attempted worldwide, but limited success has been reported. Edison Welding Institute (EWI) investigated the laser weldability of galvanized steel in a lap-joint configuration with no gap using a dual beam laser welding technique.
Technical Paper

Vibration Weldability Study for Painted Plastics

1999-05-10
1999-01-1628
Weldability study has been performed on Polypropylene (PP) and PC/ABS samples to investigate how the paint layer along the weld joint affects the vibration weldability. The plastic used for this study were PP representing semicrystalline thermoplastics and PC/ABS representing amorphous thermoplastics. Both resins were molded to generate sample plaques for the study. Design of Experiment (DOE) studies were initially conducted with unpainted plaques and then repeated with the painted plaques for comparison. Optimal welding parameters were determined through DOE and the maximum weld strength under optimized welding conditions were determined and compared. Following each DOE, a regression analysis, using the weld strength as a response, was performed.
Technical Paper

Recent Developments in Friction Stir Welding

1998-06-02
981875
Friction stir welding (FSW) is a new welding process developed at The Welding Institute in Cambridge, U.K. This process uses a non-consumable rotating third body to generate frictional heat and create forging to facilitate continuous solid-state joints. In this paper, the current state of the art of FSW is discussed. A preliminary description of the process is provided, followed by the results of some relatively simple thermal modeling. The modeling results are used to provide a description of temperature distributions in FSW, as well as illustrate the effects of variations in process conditions. Representative microstructures of FSW on an Al 6061 alloy are then presented. Properties of these friction stir welds are then discussed and compared to those of both the base metal and to comparable GTAW welds. Some discussion is then given to the effects of section thickness on FSW. Examples are given of friction stir welds on aluminum alloys ranging from 2 to 30 mm in thickness.
Technical Paper

Improving Fillet Weld Fatigue Performance by Improving Weld Shape

1998-04-08
981509
The fatigue performance of fillet-welded transverse attachments was compared for several procedure variants for both FCAW and SAW on ½ in. steel plates. Measurements of weld toe shape on adjacent pieces of weld indicated that smoother weld toes, as evidenced by larger weld toe radius, were correlated to improved fatigue performance for both processes. Fatigue tests conducted on 59 and 109 ksi yield strength plates did not show an effect of plate strength. Weld procedures designed to provide smooth toes, such as reduced parameter FCAW beads at horizontal weld toes and flat position FCAW at higher heat inputs, were shown to provide fatigue performances near post-weld improved fillets.
Technical Paper

NVH Research Facilities at The Ohio State University: Existing Facilities and Envisioned Enhancements

1997-05-20
971899
The automotive NVH research infrastructure at Ohio State includes the Center for Automotive Research, the Acoustics and Dynamics Laboratory, and the Gear Dynamics and Gear Noise Research Laboratory. This paper describes the facilities of these laboratories. Two unique existing facilities, namely the transmission error measurement of gears and a laboratory for the experimental measurement of engine breathing systems, will be emphasized. Also covered are the enhancements that are envisioned through a recent grant from the Ohio Board of Regents.
Technical Paper

Experimental Verification of Design Charts for Acoustic Absorbers

1997-05-20
971951
Design charts which predict acoustic absorption of porous insulators were verified experimentally using the two-microphone technique to measure the normal incidence absorption coefficient of three glass fiber materials in two different arrangements - a single-layer sample and a single layer in front of an air space, each backed by a rigid termination. The specific flow resistivities of the materials ranged from 2,000 to 52,000 mks rayls/m. Experimentally determined absorption coefficients were in agreement with those predicted by the design charts. The results indicate that these charts could be a useful tool in designing sound absorbers for practical applications.
Technical Paper

Welding Residual Stresses in Splicing Heavy Section Shapes

1997-04-07
971585
Welding residual stress is one of the primary factors responsible for cracking at the access hole interface between the flange and web plate of welded heavy W-shapes. During multi-pass welding, cracks can be found in either the flange plate or the web plate, depending upon welding sequence, joint details and access hole size. In this study, an integrated numerical and experimental investigation was conducted to evaluate the effects of welding parameters and joint geometry on the magnitude and distribution of residual stresses in thick-section butt joints. The results provide guidelines for improved design for welding of heavy W-shapes.
Technical Paper

Periodic Response of Nonlinear Engine Mounting Systems

1995-05-01
951297
A new semi-analytical framework for the study of passive or active engine mounting systems is presented. It recognizes that most practical problems incorporate a nonlinear mount or isolation element and the resulting physical system, consisting of the engine, mount and flexible base, involves many degrees of freedom. Unlike linear systems, sinusoidal excitation produces a periodic response, including super- and sub- harmonics. Two example case systems are employed to illustrate key concepts of the framework. The first numerical example case involves a passive hydraulic engine mount with an inertia track. The second example case is a novel experimental system that has been developed to study active and passive, nonlinear mounting problems. New analytical and experimental results are presented and various nonlinear phenomena are considered. The impact of nonlinearity on vibratory power transmission and active control is also investigated.
Technical Paper

Engine Vibration Control Using Passive, Active, and Adaptive Hydraulic Mount Systems

1993-10-01
932897
Performance characteristics of passive, active, and broadband adaptive engine mounts are compared over a wide frequency range up to 250 Hz in the context of a quarter-vehicle heave model. The optimal damping coefficient of a rubber-metal mount is determined using random vibration theory. The small-scale active mount employs proportional-plus-integral control based on linear optimal control theory. The new adaptive hydraulic mount system implements an on-off damping control mode by using engine intake-manifold vacuum and a microprocessor-based solenoid valve controller. Through analytical methods, it is observed that this adaptive mount provides most desirable dynamic performance with regard to the engine-bounce control, shock absorption and vibration isolation performance requirements. Although technical prospects of the proposed adaptive system appear promising, in-situ performance needs to be evaluated.
Technical Paper

EFFECT OF FIT-UP CONDITIONS WHEN USING CONSTANT CURRENT CONTROL SYSTEMS FOR RESISTANCE SPOT WELDING

1993-03-01
930451
Resistance welding control systems utilizing secondary current feedback receive widespread utilization both in Europe and Japan. However, these types of control systems are only beginning to be used in any extended basis in this country. Currently, two variants of these systems are available; so called “self-teaching” systems, and “learning curve” systems. Either system has been shown to be capable of providing a stable secondary resistance welding current within two cycles. Recent work has indicated, however, that the self-teaching type control systems may be adversely affected by non-optimum set-up conditions, particularly poor fit-up and the introduction of organics (sealers or adhesives) at the faying surface. This work examines the performance of learning curve type constant current control systems under these adverse set-up conditions. Six conditions were selected for study; three degrees of progressively poorer fit-up, with and without an organic sealer.
Technical Paper

Effects of Prepulse Resistance Spot Welding Schedules on the Weldability Characteristics of Galvanized Steel

1990-02-01
900740
Many automotive production plants are using various prepulse schedules for resistance spot welding thin gauge galvanized steel. The claimed reasons are that wider current range and longer electrode life are obtainable in comparison to the conventional schedule. However, data to support this are not available. The objective of this program was to determine the effect of prepulsation on spot weldability of galvanized steel. In this work, several prepulse resistance spot welding schedules were evaluated in two full factorial experiments. The effect of the number of prepulse cycles, the prepulse heat level and the effect of cool time were studied in detail. Weldability was evaluated using an electrode life test procedure in which the current range was periodically examined over the life of the electrodes. Generally, the results indicate that prepulsation has a negative effect on the resistance spot weldability of thin gauge galvanized steel.
X