Refine Your Search

Topic

Author

Search Results

Technical Paper

Comparison of the Responses of the Thorax and Pelvis of the GHBMC M50 -O Using Two Different Foam Materials in a High-Speed Rear Facing Frontal Impact Scenario

2024-04-09
2024-01-2647
Due to the lack of biofidelity seen in GHBMC M50-O in rear-facing impact simulations involving interaction with the seat back in an OEM seat, it is important to explore how the boundary conditions might be affecting the biofidelity and potentially formulate methods to improve biofidelity of different occupant models in the future while also maintaining seat validity. This study investigated the influence of one such boundary condition, which is the seat back foam material properties, on the thorax and pelvis kinematics and injury outcomes of the GHBMC 50th M50-O model in a high-speed rear-facing frontal impact scenario, which involves severe occupant loading of the seat back. Two different seat back foam materials were used – a stiff foam with high densification and a soft foam with low densification. The peak magnitudes of the T-spine resultant accelerations of the GHBMC M50-O increased with the use of soft foam as compared to stiff foam.
Technical Paper

Implementation of Adaptive Equivalent Consumption Minimization Strategy

2024-04-09
2024-01-2772
Electrification of vehicles is an important step towards making mobility more sustainable and carbon-free. Hybrid electric vehicles use an electric machine with an on-board energy storage system, in some form to provide additional torque and reduce the power requirement from the internal combustion engine. It is important to control and optimize this power source split between the engine and electric machine to make the best use of the system. This paper showcases an implementation of the Adaptive Equivalent Consumption Minimization Strategy (A-ECMS) with minimization in real-time in the dSPACE MicroAutobox II as the Hybrid Supervisory Controller (HSC). While the concept of A-ECMS has been well established for many years, there are no published papers that present results obtained in a production vehicle suitably modified from conventional to hybrid electric propulsion including real world testing as well as testing on regulatory cycles.
Technical Paper

Modular Multilevel GaN Based Ultra-High Power Density Electric Power Conversion and Transmission on the Lunar Surface

2023-09-05
2023-01-1509
NASA’s Watts on the Moon Challenge is seeking solutions to transfer at least 1.065 kW power from a 120 V dc source to a 24-32 V dc load over a 3-km distance under the same environmental conditions as the Lunar surface (i.e., 77 K temperature and 1 mTorr pressure). The selected solution from the author’s team proposed utilizing two modular multilevel Gallium Nitride (GaN) based isolated dc-dc converters to connect the 120 V dc source with the 24-32 V dc load bank via 1.5 kV rated dc transmission lines. The modular multilevel converters feature frequency multiplication, high step-down voltage ratio and low device voltage stress. In the converters, GaN gate injection transistor (GaN GIT) and GaN High-Electron-Mobility Transistor (GaN HEMT) devices are chosen as switching devices, due to the merits of lower power loss, radiation hardness and ability to work under cryogenic and vacuum conditions.
Journal Article

An Experimental Investigation of the Acoustic Performance of a High-Frequency Silencer for Turbocharger Compressors

2023-05-08
2023-01-1088
Conventional silencers have extensively been used to attenuate airborne pressure pulsations in the breathing system of internal combustion engines, typically at low frequencies as dictated by the crankshaft speed. With the introduction of turbocharger compressors, however, particularly those with the ported shroud recirculating casing treatment, high-frequency tones on the order of 10 kHz have become a significant contributor to noise in the induction system. The elevated frequencies promote multi-dimensional wave propagation, rendering traditional silencing design methods invalid, as well as the standard techniques to assess silencer performance. The present study features a novel high-frequency silencer designed to target blade-pass frequency (BPF) noise at the inlet of turbocharger compressors. The concept uses an acoustic straightener to promote planar wave propagation across arrays of quarter-wave resonators, achieving a broadband attenuation.
Technical Paper

Development of a Gear Backlash Compensator for Electric Machines in P0-P4 Parallel Hybrid Drivelines

2023-04-11
2023-01-0454
Backlash is the movement between the gear teeth that allows them to mate without binding. Backlash can cause large torque fluctuations in vehicle powertrains when the input torque changes direction. These fluctuations cause a jerk and shuddering, which negatively affects drive quality. Input torque frequently changes direction in electric vehicles due to regenerative braking. Limiting zero crossings is an option for better drive quality; however, this leads to decreased vehicle efficiency. Because of this, modulating the torque through the backlash region is preferred, yet, if done poorly, it can result in sluggish torque response. This paper proposes a torque-shaping algorithm for an electric motor and gear/differential system to reduce backlash in electric vehicles. The control algorithm modulates the commanded torque’s rate of change based on the vehicle speed and zero-crossing torque.
Technical Paper

Prescan Extension Testing of an ADAS Camera

2023-04-11
2023-01-0831
Testing vision-based advanced driver assistance systems (ADAS) in a Camera-in-the-Loop (CiL) bench setup, where external visual inputs are used to stimulate the system, provides an opportunity to experiment with a wide variety of test scenarios, different types of vehicle actors, vulnerable road users, and weather conditions that may be difficult to replicate in the real world. In addition, once the CiL bench is setup and operating, experiments can be performed in less time when compared to track testing alternatives. In order to better quantify normal operating zones, track testing results were used to identify behavior corridors via a statistical methodology. After determining normal operational variability via track testing of baseline stationary surrogate vehicle and pedestrian scenarios, these operating zones were applied to screen-based testing in a CiL test setup to determine particularly challenging scenarios which might benefit from replication in a track testing environment.
Technical Paper

Development and Calibration of the Large Omnidirectional Child ATD Head and Neck Complex Finite Element Model

2023-04-11
2023-01-0557
The National Highway Traffic Safety Administration (NHTSA) has developed the Large Omnidirectional Child (LODC) Anthropomorphic Test Device (ATD) to improve the biofidelity of the currently available Hybrid III 10-year-old (HIII-10C) ATD. The improvements of the LODC over the HIII-10C include changes in sub-assemblies such as the head and neck, where the LODC head is a redesigned HIII-10C head with pediatric mass properties and the neck has a modified atlanto-occipital joint to replicate observations made from human specimens. The current study focuses on developing a dynamic, nonlinear finite element (FE) model of the LODC ATD head and neck complex. The FE mesh is generated using HyperMesh based on the three-dimensional CAD model. The material data, contact definitions and initial conditions are defined in LS-PrePost and converted to LS-Dyna solver input format. The initial and boundary conditions are defined to replicate the neck flexion experimental tests.
Journal Article

Track, GoPro, and Prescan Testing of an ADAS Camera

2023-04-11
2023-01-0826
In order to validate the operation of advanced driver assistance systems (ADAS), tests must be performed that assess the performance of the system in response to different scenarios. Some of these systems are designed for crash-imminent situations, and safely testing them requires large stretches of controlled pavement, expensive surrogate targets, and a fully functional vehicle. As a possible more-manageable alternative to testing the full vehicle in these situations, this study sought to explore whether these systems could be isolated, and tests could be performed on a bench via a hardware-in-the-loop methodology. For camera systems, these benches are called Camera-in-the-Loop (CiL) systems and involve presenting visual stimuli to the device via an external input.
Journal Article

Comparison of Child Restraint System (CRS) Installation Methods and Misuse During Far-Side Impact Sled Testing

2023-04-11
2023-01-0817
Child occupants have not been studied in far-side impacts as thoroughly as frontal or near side crash modes. The objective is to determine whether the installation method of child restraint systems (CRS) affects far-side crash performance. Twenty far-side impact sled tests were conducted with rear-facing (RF) CRS, forward-facing (FF) CRS, high-back boosters, and belt only. Each was installed on second row captain’s chairs from a recent model year minivan. Common CRS installation errors were tested, including using the seat belt in Emergency Locking Mode (ELR) instead of Automatic Locking Mode (ALR), not attaching the top tether, and using both the lower anchors (LA) and seat belt together. Correct installations were also tested as a baseline comparison. Q3s and Hybrid III 6-year-old (6yo) anthropomorphic test devices (ATDs) were used. Lateral displacements of the CRS and head were examined as well as injury metrics in the head, spine, and torso.
Technical Paper

Effects of Adjacent Vehicle Seat Positions on Child Restraint System (CRS) Performance in Far-Side Impacts

2022-03-29
2022-01-0848
Many vehicles allow consumers to adapt the vehicle environment to their families’ needs by folding or removing one or more rear row seats. It is currently unclear how different seat configurations affect child restraint systems (CRS) installed in adjacent seats. The objective is to quantify CRS performance in far-side impacts when the seating position adjacent to the CRS is in its normal upright position, folded in half, or removed. Twelve tests were conducted. Second row seats from a recent model year minivan were obtained, including full size captain’s chairs from the outboard positions and narrow seats from the center position. Rear-facing (RF) and forward-facing (FF) CRS were installed one at a time in either the outboard or center position. The seating position adjacent to the CRS was set in either the standard upright position, folded in half, or removed. Far-side impacts were conducted at 10° anterior of pure lateral at 24.8 ± 0.2 g. The Q3s ATD was used for all tests.
Technical Paper

Comparative Analysis of Protection Systems for DC Power Distribution in Electrified Vehicles

2022-03-29
2022-01-0135
Electric transportation has the potential of mitigating CO2 emissions and reduce fuel needs. One of the challenges for the growth of this industry is limited range and efficiency of the vehicles associated with battery storage systems and electric drive technology. High voltage systems are expected to increase efficiency and then vehicle mileage, however this increases the severity of the fault conditions, especially in case of short circuit. Melting fuse is commonly used for the purpose of protection in electrified vehicles, while it is effective and reliable, there are several shortcomings such as lack of precision, effect of ambient temperature, bulky, interruption time depending on the fault condition etc. Additionally, the on-board DC power distribution system (PDS) is characterized by low impedance, in this environment fuses are not able to limit the fault current leading to damage of electronics and hazard for the battery pack.
Technical Paper

Optimal Energy Management Strategy for Energy Efficiency Improvement and Pollutant Emissions Mitigation in a Range-Extender Electric Vehicle

2021-09-05
2021-24-0103
The definition of the energy management strategy for a hybrid electric vehicle is a key element to ensure maximum energy efficiency. The ability to optimally manage the on-board energy sources, i.e., fuel and electricity, greatly affects the final energy consumption of hybrid powertrains. In the case of plug-in series-hybrid architectures, such as Range-Extender Electric Vehicles (REEVs), fuel efficiency optimization alone can result in a stressful operation of the range-extender engine with an excessively high number of start/stops. Nonetheless, reducing the number of start/stops can lead to long periods in which the engine is off, resulting in the after-treatment system temperature to drop and higher emissions to be produced at the next engine start.
Technical Paper

Development and Calibration of the Large Omnidirectional Child ATD Head Finite Element Model

2021-04-06
2021-01-0922
To improve the biofidelity of the currently available Hybrid III 10-year-old (HIII-10C) Anthropomorphic Test Device (ATD), the National Highway Traffic Safety Administration (NHTSA) has developed the Large Omnidirectional Child (LODC) ATD. The LODC head is a redesigned HIII-10C head with mass properties and modified skin material required to match pediatric biomechanical impact response targets from the literature. A dynamic, nonlinear finite element (FE) model of the LODC head has been developed using the mesh generating tool Hypermesh based on the three-dimensional CAD model. The material data, contact definitions, and initial conditions are defined in LS-PrePost and converted to LS-Dyna solver input format. The aluminum head skull is stiff relative to head flesh material and was thus modeled as a rigid material. For the actual LODC, the head flesh is form fit onto the skull and held in place through contact friction.
Technical Paper

Effects of Anti-Sway Bar Separation on the Handling Characteristics of a SUV

2021-04-06
2021-01-0976
A single-vehicle crash involving an SUV led to the study of the failure of the anti-sway bar linkage and tire pressure and their relative effects on the handling characteristics of the vehicle. The SUV, having been involved in a rollover, was found with the anti-sway bar drop link disconnected from the suspension lower A-arm assembly. Also, after the crash, the tire pressure in the front tires on the subject vehicle was measured to be above the value specified by the SUV manufacturer; however, the pressure for one of the rear tires was measured to be roughly half of the SUV manufacturer’s recommended pressure. The other rear tire was deflated. The testing described herein addresses the question of what effects the anti-sway bar drop link disconnection or reduced rear axle tire pressure would have on the SUV’s pre-accident handling and driveability.
Journal Article

In-Vehicle Validation of Heavy-Duty Vehicle Fuel Savings via a Hierarchical Predictive Online Controller

2021-04-06
2021-01-0432
This paper presents the evolution of a series of connected, automated vehicle technologies from simulation to in-vehicle validation for the purposes of minimizing the fuel usage of a class-8 heavy duty truck. The results reveal that an online, hierarchical model-predictive control scheme, implemented via the use of extended horizon driver advisories for velocity and gear, achieves fuel savings comparable to predictions from software-in-the-loop (SiL) simulations and engine-in-the-loop (EiL) studies that operated with a greater degree of powertrain and chassis automation. The work of this paper builds on prior work that presented in detail this predictive control scheme that successively optimizes vehicle routing, arrival and departure at signalized intersections, speed trajectory planning, platooning, predictive gear shifting, and engine demand torque shaping.
Technical Paper

Engine-in-the-Loop Study of a Hierarchical Predictive Online Controller for Connected and Automated Heavy-Duty Vehicles

2020-04-14
2020-01-0592
This paper presents a cohesive set of engine-in-the-loop (EIL) studies examining the use of hierarchical model-predictive control for fuel consumption minimization in a class-8 heavy-duty truck intended to be equipped with Level-1 connectivity/automation. This work is motivated by the potential of connected/automated vehicle technologies to reduce fuel consumption in both urban/suburban and highway scenarios. The authors begin by presenting a hierarchical model-predictive control scheme that optimizes multiple chassis and powertrain functionalities for fuel consumption. These functionalities include: vehicle routing, arrival/departure at signalized intersections, speed trajectory optimization, platooning, predictive optimal gear shifting, and engine demand torque shaping. The primary optimization goal is to minimize fuel consumption, but the hierarchical controller explicitly accounts for other key objectives/constraints, including operator comfort and safe inter-vehicle spacing.
Journal Article

Pre-Deployment Testing of Low Speed, Urban Road Autonomous Driving in a Simulated Environment

2020-04-14
2020-01-0706
Low speed autonomous shuttles emulating SAE Level L4 automated driving using human driver assisted autonomy have been operating in geo-fenced areas in several cities in the US and the rest of the world. These autonomous vehicles (AV) are operated by small to mid-sized technology companies that do not have the resources of automotive OEMs for carrying out exhaustive, comprehensive testing of their AV technology solutions before public road deployment. Due to the low speed of operation and hence not operating on roads containing highways, the base vehicles of these AV shuttles are not required to go through rigorous certification tests. The way these vehicles’ driver assisted AV technology is tested and allowed for public road deployment is continuously evolving but is not standardized and shows differences between the different states where these vehicles operate.
Journal Article

Optimal Sizing and Control of Battery Energy Storage Systems for Hybrid Turboelectric Aircraft

2020-03-10
2020-01-0050
Hybrid-electric gas turbine generators are considered a promising technology for more efficient and sustainable air transportation. The Ohio State University is leading the NASA University Leadership Initiative (ULI) Electric Propulsion: Challenges and Opportunities, focused on the design and demonstration of advanced components and systems to enable high-efficiency hybrid turboelectric powertrains in regional aircraft to be deployed in 2030. Within this large effort, the team is optimizing the design of the battery energy storage system (ESS) and, concurrently, developing a supervisory energy management strategy for the hybrid system to reduce fuel burn while mitigating the impact on the ESS life. In this paper, an energy-based model was developed to predict the performance of a battery-hybrid turboelectric distributed-propulsion (BHTeDP) regional jet.
Journal Article

Prediction of Broadband Noise in an Automotive Centrifugal Compressor with Three-Dimensional Computational Fluid Dynamics Detached Eddy Simulations

2019-06-05
2019-01-1487
Centrifugal compressors for automotive turbochargers must operate over wide speed and flow ranges to provide the required air pressure and mass flow rate to the intake manifold of the internal combustion engines. At a fixed rotational speed, the flow field near the inducer of the impeller becomes increasingly unstable with decreasing flow rate, as the incidence angle grows between the air flow approaching the impeller, relative to the tangent of the main impeller blades at the leading edge. Flow field measurements conducted earlier have revealed that once the incidence angle exceeds a critical value (nearly independent of rotational speed) of approximately 15°, reversed flow near the periphery (blade tips) starts penetrating upstream of the impeller, with a high tangential velocity in the direction of impeller rotation.
Journal Article

Turbocharger Centrifugal Compressor Casing Treatment for Improved BPF Noise Using Computational Fluid Dynamics

2019-06-05
2019-01-1484
The conventional ported shroud recirculation casing treatment elevates narrowband noise at blade pass frequency. A new ported shroud recirculating casing treatment was implemented in Ford’s 3.5L turbo gas engine as Noise Vibration and Harshness (NVH) counter measure to reduce whoosh (broadband flow noise) noise without elevating narrowband noise at blade pass frequency. The new ported shroud design incorporates holes between the main and secondary recirculating passage and a slight cross-sectional area reduction just upstream of the impeller. These design features reduce whoosh noise without elevating the first order and the sixth order tonal noise at blade pass frequency. The new ported shroud design decreases narrowband tonal noise sound pressure level by 3-6 dB in the low to mid flow region compared to the baseline design. Computational Fluid Dynamics (CFD) tools were used to develop this casing treatment design.
X