Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Development of New 2.0-Liter Plug-in Hybrid System for the Toyota Prius

2024-04-09
2024-01-2169
Reducing vehicle CO2 emissions is an important measure to help address global warming. To reduce CO2 emissions on a global basis, Toyota Motor Corporation is taking a multi-pathway approach that involves the introduction of the optimal powertrains according to the circumstances of each region, including hybrid electric (HEVs) and plug-in hybrid electric vehicles (PHEVs), as well as battery electric vehicles (BEVs). This report describes the development of a new PHEV system for the Toyota Prius. This system features a traction battery pack structure, transaxle, and power control unit (PCU) with boost converter, which were newly developed based on the 2.0-liter HEV system. As a result, the battery capacity was increased by 1.5 times compared to the previous model with almost the same battery pack size. Transmission efficiency was also improved, extending the distance that the Prius can be driven as an EV by 70%.
Technical Paper

Inverse Analysis of Road Contact Force and Contact Location Using Machine Learning with Measured Strain Data

2024-04-09
2024-01-2267
To adapt to Battery Electric Vehicle (BEV) integration, the significance of protective designs for battery packs against ground impact caused by road debris is very high, and there is also a keen interest in the feasibility assessment technique using Computer-Aided Engineering (CAE) tools for prototype-free evaluations. However, the challenge lies in obtaining real-world empirical data to verify the accuracy of the predictive CAE model. Collecting real-world data using actual battery pack can be time-consuming, costly, and accurately ascertaining the precise direction, magnitude, and location of the force applied from the road to the battery pack poses a challenging task. Therefore, in this study, we developed a methodology using machine learning, specifically Gaussian process regression (GPR), to perform inverse analysis of the direction, magnitude, and location of vehicle-road contact forces during rough road conditions.
Technical Paper

Optimizing Urban Traffic Efficiency via Virtual Eco-Driving Featured by a Single Automated Vehicle

2024-04-09
2024-01-2082
In the face of growing concerns about environmental sustainability and urban congestion, the integration of eco-driving strategies has emerged as a pivotal solution in the field of the urban transportation sector. This study explores the potential benefits of a CAV functioning as a virtual eco-driving controller in an urban traffic scenario with a group of following human-driven vehicles. A computationally inexpensive and realistic powertrain model and energy management system of the Chrysler Pacifica PHEV are developed with the field experiment data and integrated into a forward-looking vehicle simulator to implement and validate an eco-driving speed planning and energy management strategy assuming longitudinal automation. The eco-driving algorithm determines the optimal vehicle speed profile and energy management strategy.
Technical Paper

Multidisciplinary Design Method for Off-Road Vehicles Using Bayesian Active Learning

2024-04-09
2024-01-2595
When developing an off-road vehicle, it is essential to create excellent drivability that enables the vehicle to be driven on all surfaces while ensuring passenger comfort. Since durability is another indispensable performance aspect for these vehicles, the development method must be capable of considering a high-level combination of a wide range of performance targets. This paper proposes a method to identify the region in which each performance aspect is realized through a complex domain combination problem. The proposed method is helpful in the initial design stage when the detailed specifications of the target vehicle are not determined because it is capable of considering both the specifications and usage method of the target vehicle, such as the selection of road profiles and driving speeds as design variables. The proposed method has the advantage of enabling efficient concurrent studies to search for feasible regions.
Technical Paper

Modelling and Analysis of a Cooperative Adaptive Cruise Control (CACC) Algorithm for Fuel Economy

2024-04-09
2024-01-2564
Connectivity in ground vehicles allows vehicles to share crucial vehicle data, such as vehicle acceleration and speed, with each other. Using sensors such as radars and lidars, on the other hand, the intravehicular distance between a leader vehicle and a host vehicle can be detected. Cooperative Adaptive Cruise Control (CACC) builds upon ground vehicle connectivity and sensor information to form convoys with automated car following. CACC can also be used to improve fuel economy and mobility performance of vehicles in the said convoy. In this paper, a CACC system is presented, where the acceleration of the lead vehicle is used in the calculation of desired vehicle speed. In addition to the smooth car following abilities, the proposed CACC also has the capability to calculate a speed profile for the ego vehicle that is fuel efficient, making it an Ecological CACC (Eco-CACC) model.
Technical Paper

Comparison of the Responses of the Thorax and Pelvis of the GHBMC M50 -O Using Two Different Foam Materials in a High-Speed Rear Facing Frontal Impact Scenario

2024-04-09
2024-01-2647
Due to the lack of biofidelity seen in GHBMC M50-O in rear-facing impact simulations involving interaction with the seat back in an OEM seat, it is important to explore how the boundary conditions might be affecting the biofidelity and potentially formulate methods to improve biofidelity of different occupant models in the future while also maintaining seat validity. This study investigated the influence of one such boundary condition, which is the seat back foam material properties, on the thorax and pelvis kinematics and injury outcomes of the GHBMC 50th M50-O model in a high-speed rear-facing frontal impact scenario, which involves severe occupant loading of the seat back. Two different seat back foam materials were used – a stiff foam with high densification and a soft foam with low densification. The peak magnitudes of the T-spine resultant accelerations of the GHBMC M50-O increased with the use of soft foam as compared to stiff foam.
Technical Paper

Implementation of Adaptive Equivalent Consumption Minimization Strategy

2024-04-09
2024-01-2772
Electrification of vehicles is an important step towards making mobility more sustainable and carbon-free. Hybrid electric vehicles use an electric machine with an on-board energy storage system, in some form to provide additional torque and reduce the power requirement from the internal combustion engine. It is important to control and optimize this power source split between the engine and electric machine to make the best use of the system. This paper showcases an implementation of the Adaptive Equivalent Consumption Minimization Strategy (A-ECMS) with minimization in real-time in the dSPACE MicroAutobox II as the Hybrid Supervisory Controller (HSC). While the concept of A-ECMS has been well established for many years, there are no published papers that present results obtained in a production vehicle suitably modified from conventional to hybrid electric propulsion including real world testing as well as testing on regulatory cycles.
Technical Paper

The New Toyota 2.4L L4 Turbo Engine with 8AT and 1-Motor Hybrid Electric Powertrains for Midsize Pickup Trucks

2024-04-09
2024-01-2089
Toyota has developed a new 2.4L L4 turbo (2.4L-T) engine with 8AT and 1-motor hybrid electric powertrains for midsize pickup trucks. The aim of these powertrains is to fulfill both strict fuel economy and emission regulations toward “Carbon Neutrality”, while exceeding customer expectations. The new 2.4L L4 turbocharged gasoline engine complies with severe Tier3 Bin30/LEVIII SULEV30 emission regulations for body-on-frame midsize pickup trucks improving both thermal efficiency and maximum torque. This engine is matched with a newly developed 8-speed automatic transmission with wide range and close step gear ratios and extended lock-up range to fulfill three trade-off performances: powerful driving, NVH and fuel economy. In addition, a 1-motor hybrid electric version is developed with a motor generator and disconnect clutch between the engine and transmission.
Technical Paper

Reduced Order Modeling of Engine Coolant Temperature Model in Plug-In Hybrid Electric Vehicles

2024-04-09
2024-01-2008
In recent years, swift changes in market demands toward achieving carbon neutrality have driven significant developments within the automotive industry. Consequently, employing computer simulations in the early stages of vehicle development has become imperative for a comprehensive understanding of performance characteristics. Of particular importance is the cooling performance of vehicles, which plays a vital role in ensuring safety and overall performance. It is crucial to predict optimal cooling performance, particularly about the heat generated by the powertrain during the initial phases of vehicle development. However, the utilization of thermal analysis models for assessing vehicle cooling performance demands substantial computational resources, rendering them less practical for evaluating performance associated with design changes in the planning phase.
Technical Paper

Development of New Motor for Electric Vehicles

2024-04-09
2024-01-2206
The world is currently facing environmental issues such as global warming, air pollution, and high energy demand. To mitigate these challenges, the electrification of vehicles is essential as it is effective for efficient fuel utilization and promotion of alternative fuels. The optimal approach for electrification varies across different markets, depending on local energy conditions and current circumstances. Consequently, Toyota has taken the initiative to offer a comprehensive lineup of battery electric vehicles (BEV), hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and fuel cell electric vehicles (FCEV), aiming to provide sustainable solutions tailored to the unique situations and needs of each region. As part of this effort, Toyota has developed the 5th generation of hybrid electric vehicles. This paper describes the electric motor used in the new Toyota Camry which achieves high torque, high power, low losses, and compact design.
Technical Paper

Analysis of the effect of hydrogen combustion characteristics on engine performance

2023-09-29
2023-32-0039
The use of hydrogen produced from renewable energy sources is expected to be one of the most promising options for achieving carbon neutrality in automobiles, in addition to electrification and the use of biofuels and synthetic fuels. In recent years, along with fuel cell electric vehicles (FCEVs), there has been renewed interest in hydrogen engines that can utilize internal combustion engine technology. Although hydrogen has the property of a high laminar burning velocity and a wide flammable range compared to other fuels, the actual combustion phenomenon in a real engine is strongly influenced by the turbulence created by the in- cylinder flow and the distribution of fuel and air in the cylinder due to the formation of the mixture. Therefore, to fully utilize hydrogen as a fuel in actual engines and bring out its performance, it is important to understand the basic combustion characteristics of hydrogen in the cylinder and the effects of these factors on hydrogen combustion.
Technical Paper

New Concept Exhaust Manifold for Next-Generation HEV and PHEV

2023-09-29
2023-32-0062
HEV and PHEV require an improved aftertreatment system to clean the exhaust gas in various driving situations. The efficiency of aftertreatment system is significantly influenced by the residence time of the gas in a catalyst which gas flow has generally strong pulsation. Simulation showed up to 70% reduction of exhaust gas emission if the pulsation could be completely attenuated. A new concept exhaust manifold was designed to minimize pulsation flow by wall impingement, with slight increase of pressure loss. Experimental results with new concept exhaust manifold showed exhaust gas emission were reduced 16% at cold condition and 40% at high-load condition.
Technical Paper

Vehicle Simulations development to predict Electric field level distribution based on GB/T18387 measurement method

2023-09-29
2023-32-0071
The development of electric vehicles has been progressed, rapidly, to achieve Carbon neutrality by 2050. There have been increasing concerns about Electromagnetic Compatibility (EMC) performance due to increasing power for power trains of vehicles. Because same power train system expands to some vehicles, we have developed numerical simulations in order to predict the vehicle EMC performances. We modeled a vehicle which has inverter noises by numerical simulation to calculate electric fields based on GB/T18387. We simulated the common mode noise which flows through the shielding braid of the high voltage wire harnesses. As a result, it is confirmed a correlation between the electric fields calculated by numerical simulation and the measured one.
Technical Paper

Modular Multilevel GaN Based Ultra-High Power Density Electric Power Conversion and Transmission on the Lunar Surface

2023-09-05
2023-01-1509
NASA’s Watts on the Moon Challenge is seeking solutions to transfer at least 1.065 kW power from a 120 V dc source to a 24-32 V dc load over a 3-km distance under the same environmental conditions as the Lunar surface (i.e., 77 K temperature and 1 mTorr pressure). The selected solution from the author’s team proposed utilizing two modular multilevel Gallium Nitride (GaN) based isolated dc-dc converters to connect the 120 V dc source with the 24-32 V dc load bank via 1.5 kV rated dc transmission lines. The modular multilevel converters feature frequency multiplication, high step-down voltage ratio and low device voltage stress. In the converters, GaN gate injection transistor (GaN GIT) and GaN High-Electron-Mobility Transistor (GaN HEMT) devices are chosen as switching devices, due to the merits of lower power loss, radiation hardness and ability to work under cryogenic and vacuum conditions.
Technical Paper

Model-Based Fault Diagnostic Strategy for Microgrids

2023-09-05
2023-01-1506
Microgrids are a topic of interest in recent years, largely due to their compatibility with the integration of distributed renewable resources, capability for bidirectional power flow, and ability to reconfigure to mitigate the effects of faults. Fault diagnosis algorithms are a foundational technology for microgrids. These algorithms must have two primary capabilities. First, faults must be detectable; it is known when the fault occurs. Second, faults must be isolable; the type and location of detected faults can be determined. However, most fault handling research considering microgrids has focused on the protection algorithm. Protection algorithms seek to quickly extinguish dangerous faults which can damage components. However, these algorithms may not sufficiently capture less severe faults, or provide comprehensive monitoring for the microgrid. This is particularly relevant when considering applications involving fault tolerant control or dynamic grid reconfiguration.
Technical Paper

Development of a Gear Backlash Compensator for Electric Machines in P0-P4 Parallel Hybrid Drivelines

2023-04-11
2023-01-0454
Backlash is the movement between the gear teeth that allows them to mate without binding. Backlash can cause large torque fluctuations in vehicle powertrains when the input torque changes direction. These fluctuations cause a jerk and shuddering, which negatively affects drive quality. Input torque frequently changes direction in electric vehicles due to regenerative braking. Limiting zero crossings is an option for better drive quality; however, this leads to decreased vehicle efficiency. Because of this, modulating the torque through the backlash region is preferred, yet, if done poorly, it can result in sluggish torque response. This paper proposes a torque-shaping algorithm for an electric motor and gear/differential system to reduce backlash in electric vehicles. The control algorithm modulates the commanded torque’s rate of change based on the vehicle speed and zero-crossing torque.
Technical Paper

Vehicle in Virtual Environment (VVE) Method of Autonomous Driving Function Evaluation and Development

2023-04-11
2023-01-0820
Autonomous vehicle (AV) algorithms need to be tested extensively in order to make sure the vehicle and the passengers will be safe while using it after the implementation. Testing these algorithms in real world create another important safety critical point. Real world testing is also subjected to limitations such as logistic limitations to carry or drive the vehicle to a certain location. For this purpose, hardware in the loop (HIL) simulations as well as virtual environments such as CARLA and LG SVL are used widely. This paper discusses a method that combines the real vehicle with the virtual world, called vehicle in virtual environment (VVE). This method projects the vehicle location and heading into a virtual world for desired testing, and transfers back the information from sensors in the virtual world to the vehicle.
Technical Paper

Shared Autonomous Vehicle Mobility for a Transportation Underserved City

2023-04-11
2023-01-0048
This paper proposes the use of an on-demand, ride hailed and ride-Shared Autonomous Vehicle (SAV) service as a feasible solution to serve the mobility needs of a small city where fixed route, circulator type public transportation may be too expensive to operate. The presented work builds upon our earlier work that modeled the city of Marysville, Ohio as an example of such a city, with realistic traffic behavior, and trip requests. A simple SAV dispatcher is implemented to model the behavior of the proposed on-demand mobility service. The goal of the service is to optimally distribute SAVs along the network to allocate passengers and shared rides. The pickup and drop-off locations are strategically placed along the network to provide mobility from affordable housing, which are also transit deserts, to locations corresponding to jobs and other opportunities.
Technical Paper

Prescan Extension Testing of an ADAS Camera

2023-04-11
2023-01-0831
Testing vision-based advanced driver assistance systems (ADAS) in a Camera-in-the-Loop (CiL) bench setup, where external visual inputs are used to stimulate the system, provides an opportunity to experiment with a wide variety of test scenarios, different types of vehicle actors, vulnerable road users, and weather conditions that may be difficult to replicate in the real world. In addition, once the CiL bench is setup and operating, experiments can be performed in less time when compared to track testing alternatives. In order to better quantify normal operating zones, track testing results were used to identify behavior corridors via a statistical methodology. After determining normal operational variability via track testing of baseline stationary surrogate vehicle and pedestrian scenarios, these operating zones were applied to screen-based testing in a CiL test setup to determine particularly challenging scenarios which might benefit from replication in a track testing environment.
Technical Paper

Study on State-of-the-Art Preventive Maintenance Techniques for ADS Vehicle Safety

2023-04-11
2023-01-0846
1 Autonomous Driving Systems (ADS) are developing rapidly. As vehicle technology advances to SAE level 3 and above (L4, L5), there is a need to maximize and verify safety and operational benefits. As a result, maintenance of these ADS systems is essential which includes scheduled, condition-based, risk-based, and predictive maintenance. A lot of techniques and methods have been developed and are being used in the maintenance of conventional vehicles as well as other industries, but ADS is new technology and several of these maintenance types are still being developed as well as adapted for ADS. In this work, we are presenting a systematic literature review of the “State of the Art” knowledge for the maintenance of a fleet of ADS which includes fault diagnostics, prognostics, predictive maintenance, and preventive maintenance.
X