Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Physical-Based Approach for Modeling the Influence of Different Operating Parameters on the Dependency of External EGR Rate and Indicated Efficiency

2018-09-10
2018-01-1736
External Exhaust Gas Recirculation (EGR) provides an opportunity to increase the efficiency of turbocharged spark-ignition engines. Of the competing technologies and configurations, Low-Pressure EGR (LP-EGR) is the most challenging in terms of its dynamic behavior. Only some of the stationary feasible potential can be used during dynamic engine operation. To guarantee fuel consumption-optimized engine operation with no instabilities, a load point-dependent limitation of the EGR rate or alternatively an adaptation of the operating point to the actual EGR rate is crucial. For this purpose, a precise knowledge of efficiency and combustion variance is necessary. Since the operating state includes the actual EGR rate, it has an additional dimension, which usually results in an immense measuring effort.
Technical Paper

Worldwide Electrical Energy Consumption of Various HVAC Systems in BEVs and Their Thermal Management and Assessment

2018-04-03
2018-01-1190
Battery electric vehicles (BEVs) are equipped with Mobile Air Conditioning systems (MACs) to ensure a comfortable cabin temperature in all climates and ambient conditions as well as the optional conditioning of the traction battery. An assessment of the global electrical energy consumption of various MACs has been derived, where the basis of the assessment procedure is the climate data GREEN-MAC-LCCP 2007 (Global Refrigerants Energy & Environmental - Mobile Air Condition - Life Cycle Climate Performance) and the improved LCCP2013 (Life Cycle Climate Performance. The percentage driving time during 6 AM and 24 PM is divided into six different temperature bins with the solar radiation and relative humidity for 211 cities distributed over Europe, North, Central, and South America, Asia, South West Pacific, and Africa. The energy consumption of the MACs is determined by a thermal vehicle simulation. In this work, four different MACs are simulated and compared.
Journal Article

Novel Index for Evaluation of Particle Formation Tendencies of Fuels with Different Chemical Compositions

2017-08-18
2017-01-9380
Current regulatory developments aim for stricter emission limits, increased environmental protection and purification of air on a local and global scale. In order to find solutions for a cleaner combustion process, it is necessary to identify the critical components and parameters responsible for the formation of emissions. This work provides an evaluation process for particle formation during combustion of a modern direct injection engine, which can help to create new aftertreatment techniques, such as a gasoline particle filter (GPF) system, that are fit for purpose. With the advent of “real driving emission” (RDE) regulations, which include market fuels for the particulate number testing procedure, the chemical composition and overall quality of the fuel cannot be neglected in order to yield a comparable emission test within the EU and worldwide.
Journal Article

The Thermodynamics of Exhaust Gas Condensation

2017-06-29
2017-01-9281
Water vapor is, aside from carbon dioxide, the major fossil fuel combustion by-product. Depending on its concentration in the exhaust gas mixture as well as on the exhaust gas pressure, its condensation temperature can be derived. For typical gasoline engine stoichiometric operating conditions, the water vapor dew point lies at about 53 °C. The exhaust gas mixture does however contain some pollutants coming from the fuel, engine oil, and charge air, which can react with the water vapor and affect the condensation process. For instance, sulfur trioxide present in the exhaust, reacts with water vapor forming sulfuric acid. This acid builds a binary system with water vapor, which presents a dew point often above 100 °C. Exhaust composition after leaving the combustion chamber strongly depends on fuel type, engine concept and operation point. Furthermore, the exhaust undergoes several chemical after treatments.
Journal Article

Development and Demonstration of LNT+SCR System for Passenger Car Diesel Applications

2014-04-01
2014-01-1537
The regulations for mobile applications will become stricter in Euro 6 and further emission levels and require the use of active aftertreatment methods for NOX and particulate matter. SCR and LNT have been both used commercially for mobile NOX removal. An alternative system is based on the combination of these two technologies. Developments of catalysts and whole systems as well as final vehicle demonstrations are discussed in this study. The small and full-size catalyst development experiments resulted in PtRh/LNT with optimized noble metal loadings and Cu-SCR catalyst having a high durability and ammonia adsorption capacity. For this study, an aftertreatment system consisting of LNT plus exhaust bypass, passive SCR and engine independent reductant supply by on-board exhaust fuel reforming was developed and investigated. The concept definition considers NOX conversion, CO2 drawback and system complexity.
Journal Article

Timing Evaluation in E/E Architecture Design at BMW

2014-04-01
2014-01-0317
Timing evaluation methods help to design a robust and extendible E/E architecture (electric/electronic). BMW has introduced the systematic application of such methods in the E/E design process within the last three years. Meanwhile, most of the architectural changes are now verified by a tool-based, automatic real-time analysis. This has increased the accuracy of the network planning and productivity of the BMW network department. In this paper, we give an overview of the actual status of timing evaluations in BMW's E/E architecture design. We discuss acceptance criteria, analysis metrics, and design rules, as far as these are related to timing. We look specifically at automation options, as these improve the productivity further. We will see that timing analysis has matured and should be mandatory for application in mass production E/E architecture development. At the same time, there is room for future improvements.
Technical Paper

SCR System Optimization and Control Supported by Simulation Tools

2013-04-08
2013-01-1075
The successful design and especially the control of the SCR system is a challenging process that can be supported by the application of simulation tools. As a first step, we employ physico-chemically informed ‘off-line’ models that are calibrated with the help of targeted small- and full-scale tests. Despite their high level of sophistication, this SCR model is able to be integrated in a control-oriented simulation software platform and connected to other powertrain simulation blocks. The target is to use this simulation platform as a virtual environment for the development and optimization of SCR control strategies. The above process is demonstrated in the case of a passenger car SCR. The model is calibrated at both fresh and aged catalyst condition and validated using experimental data from the engine bench under a wide variety of operating conditions. Next, the calibrated model was coupled with embedded control models, developed for Euro 6 passenger car powertrains.
Technical Paper

Gasoline HCCI/CAI on a Four-Cylinder Test Bench and Vehicle Engine - Results and Conclusions for the Next Investigation Steps

2010-05-05
2010-01-1488
Internal combustion engines with lean homogeneous charge and auto-ignition combustion of gasoline fuels have the capability to significantly reduce fuel consumption and realize ultra-low engine-out NOx emissions. Group research of Volkswagen AG has therefore defined the Gasoline Compression Ignition combustion (GCI®) concept. A detailed investigation of this novel combustion process has been carried out on test bench engines and test vehicles by group research of Volkswagen AG and IAV GmbH Gifhorn. Experimental results confirm the theoretically expected potential for improved efficiency and emissions behavior. Volkswagen AG and IAV GmbH will utilize a highly flexible externally supercharged variable valve train (VVT) engine for future investigations to extend the understanding of gas exchange and EGR strategy as well as the boost demands of gasoline auto-ignition combustion processes.
Journal Article

Possible Influences on Fuel Consumption Calculations while using the Hydrogen-Balance Method

2008-04-14
2008-01-1037
The Hydrogen-Balance equation makes it possible to calculate the fuel economy or fuel consumption of hydrogen powered vehicles simply by analyzing exhaust emissions. While the benefits of such a method are apparent, it is important to discuss possible influencing factors that may decrease Hydrogen-Balance accuracy. Measuring vehicle exhaust emissions is done with a CVS (Constant Volume Sampling) system. While the CVS system has proven itself both robust and precise over the years, utilizing it for hydrogen applications requires extra caution to retain measurement accuracy. Consideration should be given to all testing equipment, as well as the vehicle being tested. Certain environmental factors may also play a role not just in Hydrogen-Balance accuracy, but as also in other low emission testing accuracy.
Technical Paper

Comparison of Different EGR Solutions

2008-04-14
2008-01-0206
This paper compares 4 different EGR systems by means of simulation in GT-Power. The demands of optimum massive EGR and fresh air rates were based on experimental results. The experimental data were used to calibrate the model and ROHR, in particular. The main aim was to investigate the influence of pumping work on engine and vehicle fuel consumption (thus CO2 production) in different EGR layouts using optimum VG turbine control. These EGR systems differ in the source of pressure drop between the exhaust and intake pipes. Firstly, the engine settings were optimized under steady operation - BSFC was minimized while taking into account both the required EGR rate and fresh air mass flow. Secondly, transient simulations (NEDC cycle) were carried out - a full engine model was used to obtain detailed information on important parameters. The study shows the necessity to use natural pressure differences or renewable pressure losses if reasonable fuel consumption is to be achieved.
Journal Article

Synergies between High EGR Operation and GDI Systems

2008-04-14
2008-01-0134
A gasoline direct injection engine was operated at elevated EGR levels over a significant portion of the performance map. The engine was modified to use both cooled and un-cooled EGR in high pressure loop and low pressure loop configurations. The addition of EGR at low and part load was shown to decrease NO and CO emissions and to reduce fuel consumption by up to 4%, primarily through the reduction in pumping losses. At high loads, the addition of EGR resulted in higher fuel consumption benefits of 10-20% as well as the expected NO and CO reductions. The fuel economy benefit at high loads resulted from a decrease in knock tendency and a subsequent improvement in combustion phasing as well as reductions in exhaust temperatures that eliminated the requirement for over-fuelling.
Technical Paper

Objective Analysis of the Impact on the Design Change of a Halfshaft

2008-03-30
2008-36-0552
The production of vehicles with low noise and vibration level at low costs has been one of the main targets of the automobilist industry. The noise level heard by the passengers inside the vehicle influences directly on the perception they have about the car. On the other hand, low prices are extremely necessary to keep the projects competitive on the sales market. This job analyses the impact caused over the noise heard inside the vehicle when a change was applied on the design of the halfshaft: the substitution of a tubular shaft by a barshaft. The main goal of this design change is the cost reduction.
Technical Paper

Locally Resolved Measurement of Gas-Phase Temperature and EGR-Ratio in an HCCI-Engine and Their Influence on Combustion Timing

2007-04-16
2007-01-0182
Laser-based measurements of charge temperature and exhaust gas recirculation (EGR) ratio in an homogeneous charge compression ignition (HCCI) engine are demonstrated. For this purpose, the rotational coherent anti-Stokes Raman spectroscopy technique (CARS) was used. This technique allows temporally and locally resolved measurements in combustion environments through only two small line-of-sight optical accesses and the use of standard gasoline as a fuel. The investigated engine is a production-line four-cylinder direct-injection gasoline engine with the valve strategy modified to realize HCCI-operation. CARS-measurements were performed in motored and fired operation and the results are compared to polytropic calculations. Studies of engine speed, load, valve timing, and injection pressure were conducted showing the strong influence of charge temperature on the combustion timing.
Technical Paper

Engine-Independent Exhaust Gas Aftertreatment Using a Burner Heated Catalyst

2006-10-16
2006-01-3401
Meeting current exhaust emission standards requires rapid catalyst light-off. Closed-coupled catalysts are commonly used to reduce light-off time by minimizing exhaust heat loss between the engine and catalyst. However, this exhaust gas system design leads to a coupling of catalyst heating and engine operation. An engine-independent exhaust gas aftertreatment can be realized by combining a burner heated catalyst system (BHC) with an underfloor catalyst located far away from the engine. This paper describes some basic characteristics of such a BHC system and the results of fitting this system into a Volkswagen Touareg where a single catalyst was located about 1.8 m downstream of the engine. Nevertheless, it was possible to reach about 50% of the current European emission standard EU 4 without additional fuel consumption caused by the BHC system.
Technical Paper

Comprehensive Approach for the Chassis Control Development

2006-04-03
2006-01-1280
Handling characteristics, ride comfort and active safety are customer relevant attributes of modern premium vehicles. Electronic control units offer new possibilities to optimize vehicle performance with respect to these goals. The integration of multiple control systems, each with its own focus, leads to a high complexity. BMW and ITK Engineering have created a tool to tackle this challenge. A simulation environment to cover all development stages has been developed. Various levels of complexity are addressed by a scalable simulation model and functionality, which grows step-by-step with increasing requirements. The simulation environment ensures the coherence of the vehicle data and simulation method for development of the electronic systems. The article describes both the process of the electronic control unit (ECU) development and positive impact of an integrated tool on the entire vehicle development process.
Technical Paper

NO Laser-Induced Fluorescence Imaging in the Combustion Chamber of a Spray-Guided Direct-Injection Gasoline Engine

2004-06-08
2004-01-1918
In direct-injection gasoline (GDI) engines with charge stratification, minimizing engine-out nitrogen oxide (NOx) emission is crucial since exhaust-gas aftertreatment tolerates only limited amounts of NOx. Reduced NOx production directly lowers the frequency of energy-inefficient catalyst regeneration cycles. In this paper we investigate NO formation in a realistic GDI engine. Quantitative in-cylinder measurements of NO concentrations are carried out via laser-induced fluorescence imaging with excitation of NO (A-X(0,2) band at 248 nm), and subsequent fluorescence detection at 220-240 nm. Engine modifications were kept to a minimum in order to provide results that are representative of practical operating conditions. Optical access via a sapphire ring enabled identical engine geometry as a production line engine. The engine is operated with commercial gasoline (“Super-Plus”, RON 98).
Technical Paper

A Study of the Thermochemical Conditions in the Exhaust Manifold Using Secondary Air in a 2.0 L Engine

2002-05-06
2002-01-1676
The California LEV1 II program will be introduced in the year 2003 and requires a further reduction of the exhaust emissions of passenger cars. The cold start emissions represent the main part of the total emissions of the FTP2-Cycle. Cold start emissions can be efficiently reduced by injecting secondary air (SA) in the exhaust port making compliance with the most stringent standards possible. The thermochemical conditions (mixing rate and temperature of secondary air and exhaust gas, exhaust gas composition, etc) prevailing in the exhaust system are described in this paper. This provides knowledge of the conditions for auto ignition of the mixture within the exhaust manifold. The thus established exothermal reaction (exhaust gas post-combustion) results in a shorter time to light-off temperature of the catalyst. The mechanisms of this combustion are studied at different engine idle conditions.
Technical Paper

Exhaust Gas Aftertreatment of Volkswagen FSI Fuel Stratified Injection Engines

2002-03-04
2002-01-0346
For substantial reduction of fuel consumption of their vehicle fleet, Volkswagen AG has decided to develop spark-ignition engines with direct fuel injection. To launch this new engine concept with stratified lean operation mode while at the same time meeting the stringent EU IV emission standards, it was necessary to develop a suitable exhaust gas aftertreatment system. This was achieved as part of an intensive co-operation between Volkswagen AG and OMG, formerly dmc2 Degussa Metals Catalysts Cerdec AG. The paper describes the demands for exhaust gas aftertreatment due to lean burn operation. In addition the main development steps of the exhaust gas aftertreatment system for Volkswagen FSI engines and catalyst durability over vehicle lifetime are discussed. Focus is laid on the catalyst system design and coating variations. Volkswagen developed a new closed-loop emission control management system which uses NOx-sensor signals for the first time worldwide.
Technical Paper

Studies on Enhanced CVS Technology to Achieve SULEV Certification

2002-03-04
2002-01-0048
For the measurement of exhaust emissions, Constant Volume Sampling (CVS) technology is recommended by legislation and has proven its practical capability in the past. However, the introduction of new low emission standards has raised questions regarding the accuracy and variability of the CVS system when measuring very low emission levels. This paper will show that CVS has the potential to achieve sufficient precision for certification of SULEV concepts. Thus, there is no need for the introduction of new test methods involving high cost. An analysis of the CVS basic equations indicates the importance of the Dilution Factor (DF) for calculating true mass emissions. A test series will demonstrate that, by adjusting the dilution and using state of the art analyzers, the consistency of exhaust results is comparable with those of LEV concepts, measured with conventional CVS systems and former standard analyzers.
Technical Paper

Research Results and Progress in LeaNOx II -A Co-operation for Lean NOx Abatement

2000-10-16
2000-01-2909
In a consortium of European industrial partners and research institutes, a combination of industrial development and scientific research was organised. The objective was to improve the catalytic NOx conversion for lean burn cars and heavy-duty trucks, taking into account boundary conditions for the fuel consumption. The project lasted for three years. During this period parallel research was conducted in research areas ranging from basic research based on a theoretical approach to full scale emission system development. NOx storage catalysts became a central part of the project. Catalysts were evaluated with respect to resistance towards sulphur poisoning. It was concluded that very low sulphur fuel is a necessity for efficient use of NOx trap technology. Additionally, attempts were made to develop methods for reactivating poisoned catalysts. Methods for short distance mixing were developed for the addition of reducing agent.
X