Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Combustion and Emission Characteristics of Ammonia Jet Flames, Based on a Controllable Activated Thermal Atmosphere

2023-10-31
2023-01-1645
Ammonia is a new type of carbon-free fuel with low cost, clean and safe. The research and application of zero-carbon fuel internal combustion engines has become the mainstream of future development. However, there still exist problems should be solved in the application of ammonia fuel. Due to the lower flame laminar speed and higher ignition temperature, ammonia may have unstable combustion phenomena. In this work, the characteristics of ammonia combustion have been investigated, based on controllable thermal activated atmosphere burner. The ignition delay has been used to analyze the ammonia combustion characteristics. With the increase in co-flow temperature, the ignition delay of ammonia/air has an obvious decline. In order to investigate the emission characteristics of ammonia, CHEMKIN is used to validate the different chemical reaction mechanisms and analyse the ammonia emissions.
Journal Article

Potentialities of Boot Injection Combined with After Shot for the Optimization of Pollutant Emissions, Fuel Consumption and Combustion Noise in Passenger Car Diesel Engines

2017-03-14
2017-01-9277
The present paper illustrates an investigation about the potentialities of injection rate shaping coupled with an after injection. A pilot shot can either be absent or present before the rate-shaped boot injection. The experimental tests have been performed on a partial PCCI Euro 5 diesel engine endowed with direct-acting piezoelectric injectors. Starting from optimized triple pilot-main-after injection strategies, boot injection was implemented by maintaining the direct-acting piezo injector needle open at part lift. The results of two steady state working conditions have been presented in terms of engine-out emissions, combustion noise and brake specific fuel consumption. In addition, in-cylinder analyses of the pressure, heat-release rate, temperature and emissions have been evaluated. Considering the in-cylinder pressure traces and the heat release rate curves, the injection rate shaping proved to influence combustion in the absence of a pilot injection to a great extent.
Journal Article

Impact on Performance, Emissions and Thermal Behavior of a New Integrated Exhaust Manifold Cylinder Head Euro 6 Diesel Engine

2013-09-08
2013-24-0128
The integration of the exhaust manifold in the engine cylinder head has received considerable attention in recent years for automotive gasoline engines, due to the proven benefits in: engine weight diminution, cost saving, reduced power enrichment, quicker engine and aftertreatment warm-up, improved packaging and simplification of the turbocharger installation. This design practice is still largely unknown in diesel engines because of the greater difficulties, caused by the more complex cylinder head layout, and the expected lower benefits, due to the absence of high-load enrichment. However, the need for improved engine thermomanagement and a quicker catalytic converter warm-up in efficient Euro 6 diesel engines is posing new challenges that an integrated exhaust manifold architecture could effectively address. A recently developed General Motors 1.6L Euro 6 diesel engine has been modified so that the intake and exhaust manifolds are integrated in the cylinder head.
X