Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

PSD Profiles for Dynamic and Durability Tests of Military Off-Road Vehicle Racks

2023-04-11
2023-01-0107
In a military off-road vehicle, generally designed to operate in an aggressive operating environment, the typical comfort requirements for trucks and passenger cars are revised for robustness, safety and security. An example is the cabin space optimisation to provide easy access to many types of equipment required on-board. In this field, racks hung to the cabin chassis are generally used to support several electronic systems, like radios. The dynamic loads on a rack can reach high values in the operative conditions of a military vehicle. Rack failures should be prevented for the safety of driver, crew and load and the successful execution of a mission. Therefore, dynamic and durability tests of these components, including the fixtures to the vehicle, are required.
Technical Paper

Electromechanical Energy Scavenger for Automotive Tires

2011-04-12
2011-01-0097
This paper presents a multi-physic modeling of an electromechanical energy scavenging device able to supply energy inside car tires for wireless sensors. A permanent magnet, connected to the inner liner of a tire, is accelerated along a guide by the tire deformation during car motion; by interacting with coils it generates a power which is conditioned by a proper electronic interfaced to an external load. The original approach implemented in this kind of device is the nonlinear dynamic properties designed and controlled: adaptive resonance in function of car velocity is optimized for increasing its global efficiency. The energy conversion process takes into account the simulation of different phenomena such as: non linear dynamic and adaptive resonant behavior of the seismic mass, electromagnetic and magneto-static coupling between moving mass and coils, transfer of the generated power to an external load by means of a nonlinear circuit interface.
Technical Paper

A Modal-Geometrical Selection Criterion for Master Nodes Applied to Engine Components

2011-04-12
2011-01-0498
Usually, both an experimental modal analysis or a numerical modal analysis performed on reduced model present the problem of master nodes selection. A methodology based on the experience is normally used or computationally heavy criterion can be applied. In that paper, the Modal-Geometrical Selection Criterion (MoGeSeC) is applied to a crankshaft, both for an EMA (experimental modal analysis) and for a reduction procedure. Then the results are compared with other literature criteria. As far as the EMA is concerned, the nodes suggested by MoGeSeC and other criteria are used for identification of the component. The connection conditions between components are origin of uncertainty but in that case the comparison is done for each methodology in the same conditions. In that way MoGeSeC proves to be a very quick and accurate method because the nodes it selects depicts very well the dynamic behavior of the components.
Technical Paper

Integrated CAD/CAE Functional Design for Engine Components and Assembly

2011-04-12
2011-01-1071
In the present paper, starting from a first attempt design of engine components, a CAD/CAE integrated approach for designing engine is proposed. As first step, some typological quantities are setting in order to define the designed engine, for example the number of cylinders, displacements, thermodynamic cycle and geometrical constraints. Using literature approach and tailored design methodologies, the developed software provides the geometric parameters of the main engine components: crankshaft, piston, wrist pin, connecting rod, bedplate, engine block, cylinder head, bearings, valvetrain. Form the geometrical parameters, the developed software, using 3D CAD parametric models, defines a first functional model of each component and of their mutual interactions. Then a numerical analysis can be evaluated and it provides important feedback result for design targets. In the paper the particular case of a crank mechanism model is presented.
X