Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Modeling and Experimentation of GDI-Sized Particulate Filtration and Pressure-Drop Behavior in Uncoated Commercial DPF Substrates

2019-01-15
2019-01-0052
Gasoline Direct Injection (GDI) is known to produce lower concentrations of smaller particulate matter (PM) compared to diesel combustion [1]. The lower concentration results in the absence of soot-cake formation on the filter channel wall and therefore filtration behavior deviates from the expected diesel particulate filter (DPF) performance. Therefore, studies of cake-less filtration regimes for smaller sized particulates is of interest for GDI PM mitigation. This work investigates the filtration efficiency of laboratory-generated particulates, representative of GDI-sized PM, in uncoated, commercial DPF cordierite substrates of varying porosities. Size-dependent particulate concentrations were measured using a Scanning Mobility Particle Sizer (SMPS), both upstream and downstream of the filters. By comparing these measured concentrations, the particle size-dependent filtration efficiency of filter samples was calculated.
Technical Paper

Benchtop Investigation of Filtration Efficiency and Pressure Drop Behavior of Commercial High Porosity Gasoline Particulate Filters

2019-01-15
2019-01-0054
The increasing number of gasoline direct injection (GDI) vehicles on the roads has drawn attention to their particulate matter (PM) emissions, which are greater both in number and mass than port fuel injected (PFI) spark ignition (SI) engines [1]. Regulations have been proposed and implemented to reduce exposure to PM, which has been shown to have negative impacts on both human health and the environment [2, 3]. Currently, the gasoline particulate filter (GPF) is the proposed method of reducing the amount of PM from vehicle exhaust, but modifications to improve the filtration efficiency (FE) and reduce the pressure drop across the filter are yet needed for implementation of this solution in on-road vehicles. This work evaluates the impacts of wall thickness and cell density on filtration efficiency and backpressure using a benchtop filtration system.
X