Refine Your Search

Topic

Search Results

Technical Paper

Multi-Objective Bayesian Optimization Supported by Deep Gaussian Processes

2023-04-11
2023-01-0031
A common scenario in engineering design is the evaluation of expensive black-box functions: simulation codes or physical experiments that require long evaluation times and/or significant resources, which results in lengthy and costly design cycles. In the last years, Bayesian optimization has emerged as an efficient alternative to solve expensive black-box function design problems. Bayesian optimization has two main components: a probabilistic surrogate model of the black-box function and an acquisition functions that drives the design process. Successful Bayesian optimization strategies are characterized by accurate surrogate models and well-balanced acquisition functions. The Gaussian process (GP) regression model is arguably the most popular surrogate model in Bayesian optimization due to its flexibility and mathematical tractability. GP regression models are defined by two elements: the mean and covariance functions.
Journal Article

Nonlinear Multi-Fidelity Bayesian Optimization: An Application in the Design of Blast Mitigating Structures

2022-03-29
2022-01-0790
A common scenario in engineering design is the availability of several black-box functions that describe an event with different levels of accuracy and evaluation cost. Solely employing the highest fidelity, often the most expensive, black-box function leads to lengthy and costly design cycles. Multi-fidelity modeling improves the efficiency of the design cycle by combining information from a small set of observations of the high-fidelity function and large sets of observations of the low-fidelity, fast-to-evaluate functions. In the context of Bayesian optimization, the most popular multi-fidelity model is the auto-regressive (AR) model, also known as the co-kriging surrogate. The main building block of the AR model is a weighted sum of two Gaussian processes (GPs). Therefore, the AR model is well suited to exploit information generated by sources that present strong linear correlations.
Journal Article

FE Simulation of Split in Fundamental Air-Cavity Mode of Loaded Tires: Comparison with Empirical Results

2021-08-31
2021-01-1064
Tire/road noise has become a significant issue in the automotive industry, especially for electric vehicles. Among the various tire/road noise sources, the air-cavity mode can amplify the forces transmitted from the tire to the suspension system causing noticeable cabin noise near 200 Hz. Furthermore, when the tire is deformed by loading, the fundamental air-cavity mode separates into two acoustic modes, a fore-aft mode and vertical mode due to the break in geometrical symmetry. This is important because the two components of the split mode can increase force levels at the hub by interacting with neighboring structural modes, thus resulting in increased interior noise levels. In this research, finite element simulations of five commercial tires at rated load were performed with a view to identifying the frequency split and its interaction with structural resonances. These results have been compared with previously obtained empirical results.
Journal Article

Multilevel Design of Sandwich Composite Armors for Blast Mitigation using Bayesian Optimization and Non-Uniform Rational B-Splines

2021-04-06
2021-01-0255
In regions at war, the increasing use of improvised explosive devices (IEDs) is the main threat against military vehicles. Large cabin”s penetrations and high gross accelerations are primary threats against the occupants” survivability. The occupants” survivability under an IED event largely depends on the design of the vehicle armor. Under a blast load, a vehicle armor should maintain its structural integrity while providing low cabin penetrations and low gross accelerations. This investigation employs Bayesian global optimization (BGO) and non-uniform rational B-splines (NURBS) to design sandwich composite armors that simultaneously mitigate the cabin”s penetrations and the reaction force at the armor”s supports. The armors are made of four layers: steel, carbon fiber reinforced polymer (CFRP), aluminum honeycomb, and CFRP.
Journal Article

Implementation of Thermomechanical Multiphysics in a Large-Scale Three-Dimensional Topology Optimization Code

2021-04-06
2021-01-0844
Due to the inherent computational cost of multiphysics topology optimization methods, it is a common practice to implement these methods in two-dimensions. However most real-world multiphysics problems are best optimized in three-dimensions, leading to the necessity for large-scale multiphysics topology optimization codes. To aid in the development of these codes, this paper presents a general thermomechanical topology optimization method and describes how to implement the method into a preexisting large-scale three-dimensional topology optimization code. The weak forms of the Galerkin finite element models are fully derived for mechanical, thermal, and coupled thermomechanical physics models. The objective function for the topology optimization method is defined as the weighted sum of the mechanical and thermal compliance. The corresponding sensitivity coefficients are derived using the direct differentiation method and are verified using the complex-step method.
Technical Paper

Design Optimization of Sandwich Composite Armors for Blast Mitigation Using Bayesian Optimization with Single and Multi-Fidelity Data

2020-04-14
2020-01-0170
The most common and lethal weapons against military vehicles are the improvised explosive devices (IEDs). In an explosion, critical cabin’s penetrations and high accelerations can cause serious injuries and death of military personnel. This investigation uses single and multi-fidelity Bayesian optimization (BO) to design sandwich composite armors for blast mitigation. BO is an efficient methodology to solve optimization problems that involve black-box functions. The black-box function of this work is the finite element (FE) simulation of the armor subjected to blast. The main two components of BO are the surrogate model of the black-box function and the acquisition function that guides the optimization. In this investigation, the surrogate models are Gaussian Process (GP) regression models and the acquisition function is the multi-objective expected improvement (MEI) function. Information from low and high fidelity FE models is used to train the GP surrogates.
Technical Paper

Measured Interfacial Residual Strains Produced by In-Flight Ice

2019-06-10
2019-01-1998
The formation of ice on aircraft is a highly dynamic process during which ice will expand and contract upon freezing and undergoing changes in temperature. Finite element analysis (FEA) simulations were performed investigating the stress/strain response of an idealized ice sample bonded to an acrylic substrate subjected to a uniform temperature change. The FEA predictions were used to guide the placement of strain gages on custom-built acrylic and aluminum specimens. Tee rosettes were placed in two configurations adjacent to thermocouple sensors. The specimens were then placed in icing conditions such that ice was grown on top of the specimen. It was hypothesized that the ice would expand on freezing and contract as the temperature of the interface returned to the equilibrium conditions.
Technical Paper

A Comparison of Near-Field Acoustical Holography Methods Applied to Noise Source Identification

2019-06-05
2019-01-1533
Near-Field Acoustical Holography (NAH) is an inverse process in which sound pressure measurements made in the near-field of an unknown sound source are used to reconstruct the sound field so that source distributions can be clearly identified. NAH was originally based on performing spatial transforms of arrays of measured pressures and then processing the data in the wavenumber domain, a procedure that entailed the use of very large microphone arrays to avoid spatial truncation effects. Over the last twenty years, a number of different NAH methods have been proposed that can reduce or avoid spatial truncation issues: for example, Statistically Optimized Near-Field Acoustical Holography (SONAH), various Equivalent Source Methods (ESM), etc.
Technical Paper

Multi-Material Topology Optimization for Crashworthiness Using Hybrid Cellular Automata

2019-04-02
2019-01-0826
Structures with multiple materials have now become one of the perceived necessities for automotive industry to address vehicle design requirements such as light-weight, safety, and cost. The objective of this study is to develop a design methodology for multi-material structures accountable for vehicle crash durability. The heuristic topology synthesis approach of Hybrid Cellular Automaton (HCA) framework is implemented to generate multi-material structures with the constraint on the volume fraction of the final design. The HCA framework is integrated with ordered-SIMP (solid isotropic material with penalization) interpolation, artificial material library, as well as statistical analysis of material distribution data to ensure a smooth transition between multiple practical materials during the topology synthesis.
Technical Paper

Design of a Hybrid Honeycomb Unit Cell with Enhanced In-Plane Mechanical Properties

2019-04-02
2019-01-0710
Sandwich structures with honeycomb core are widely used in the lightweight design and impact energy absorption applications in automotive, sporting, and aerospace industries. Recently, the auxetic honeycombs with negative Poisson's ratio attract substantial attention for different engineering products. In this study, we implement Additive Manufacturing technology, experimental testing, and Finite Element Analysis (FEA) to design and investigate the mechanical behavior of a novel unit cell for sandwich structure core. The new core model contains the conventional and auxetic honeycomb cells beside each other to create a Hybrid Honeycomb (HHC) for the sandwich structure. The different designs of unit cells with the same volume fraction of 15% are 3D-printed using Fused Deposition Modeling technique, and the comparative study on the mechanical behavior of conventional honeycomb, auxetic honeycomb, and HHC structures is conducted.
Journal Article

A Computational Multiaxial Model for Stress-Strain Analysis of Ground Vehicle Notched Components

2017-03-28
2017-01-0329
Driveline and suspension notched components of off-road ground vehicles often experience multiaxial fatigue failures along notch locations. Large nominal load histories may induce local elasto-plastic stress and strain responses at the critical notch locations. Fatigue life prediction of such notched components requires detailed knowledge of local stresses and strains at notch regions. The notched components that are often subject to multiaxial loadings in services, experience complex stress and strain responses. Fatigue life assessment of the components utilizing non-linear Finite Element Analysis (FEA) require unfeasibly inefficient computation times and large data. The lack of more efficient and effective methods of elasto-plastic stress-strain calculation may lead to the overdesign or earlier failures of the components or costly experiments and inefficient non-linear FEA.
Technical Paper

Advanced Hydraulic Systems for Active Vibration Damping and Forklift Function to Improve Operator Comfort and Machine Productivity of Next Generation of Skid Steer Loaders

2016-09-27
2016-01-8116
Mobile Earth Moving Machinery like Skid-steer loaders have tight turning radius in limited spaces due to a short wheelbase which prevents the use of suspensions in these vehicles. The absence of a suspension system exposes the vehicle to ground vibrations of high magnitude and low frequency. Vibrations reduce operator comfort, productivity and life of components. Along with vibrations, the machine productivity is also hampered by material spillage which is caused by the tilting of the bucket due to the extension of the boom. The first part of the paper focuses on vibration damping. The chassis’ vibrations are reduced by the use of an active suspension element which is the hydraulic boom cylinder which is equivalent to a spring-damper. With this objective, a linear model for the skid steer loader is developed and a state feedback control law is implemented.
Technical Paper

Active Vibration Damping for Construction Machines Based on Frequency Identification

2016-09-27
2016-01-8121
Typically, earthmoving machines do not have wheel suspensions. This lack of components often causes uncomfortable driving, and in some cases reduces machine productivity and safety. Several solutions to this problem have been proposed in the last decades, and particularly successful is the passive solution based on the introduction of accumulators in the hydraulic circuit connecting the machine boom. The extra capacitance effect created by the accumulator causes a magnification of the boom oscillations, in such a way that these oscillations counter-react the machine oscillation caused by the driving on uneven ground. This principle of counter-reacting machine oscillations through the boom motion can be achieved also with electro-hydraulic solutions, properly actuating the flow supply to the boom actuators on the basis of a feedback sensors and a proper control strategy.
Journal Article

Improved Model for Coupled Structural-Acoustic Modes of Tires

2015-06-15
2015-01-2199
Experimental measurements of tire tread band vibration have provided direct evidence that higher order structural-acoustic modes exist in tires, not just the well-known fundamental acoustical mode. These modes display both circumferential and radial pressure variations within the tire's air cavity. The theory governing these modes has thus been investigated. A brief recapitulation of the previously-presented coupled structural-acoustical model based on a tensioned string approach will be given, and then an improved tire-acoustical model with a ring-like shape will be introduced. In the latter model, the effects of flexural and circumferential stiffness are considered. This improved model accounts for propagating in-plane vibration in addition to the essentially structure-borne flexural wave and the essentially airborne longitudinal wave accounted for in the previous model. The longitudinal structure-borne wave “cuts on” at the tire's circumferential ring frequency.
Technical Paper

Structural Damping by the Use of Fibrous Materials

2015-06-15
2015-01-2239
Because of the increasing concern with vehicle weight, there is an interest in lightweight materials that can serve several functions at once. Here we consider the vibration damping performance provided by an “acoustical” material (i.e., a fibrous layer that would normally be used for airborne noise control). It has been previously established that the vibration of panel structures creates a non-propagating nearfield in the region close to the panel. In that region, there is an oscillatory, incompressible fluid flow parallel to the panel whose strength decays exponentially with distance from the panel. When a fibrous medium is placed close to the panel in the region where the oscillatory nearfield is significant, energy is dissipated by the viscous interaction of the flow and the fibers, and hence the panel vibration is damped. The degree of panel damping is then proportional to the energy removed from the nearfield by the viscous interaction with the fibrous medium.
Journal Article

A Novel Pressure-Feedback Based Adaptive Control Method to Damp Instabilities in Hydraulic Machines

2012-09-24
2012-01-2035
Excessive vibration and poor controllability occur in many mobile fluid power applications, with negative consequences as concerns operators' health and comfort as well as machine safety and productivity. This paper addresses the problem of reducing oscillations in fluid power machines presenting a novel control technique of general applicability. Strong nonlinearities of hydraulic systems and the unpredictable operating conditions of the specific application (e.g. uneven ground, varying loads, etc.) are the main challenges to the development of satisfactory general vibration damping methods. The state of the art methods are typically designed as a function of the specific application, and in many cases they introduce energy dissipation and/or system slowdown. This paper contributes to this research by introducing an energy efficient active damping method based on feedback signals from pressure sensors mounted on the flow control valve block.
Technical Paper

Optimization for Shared-Autonomy in Automotive Swarm Environment

2009-04-20
2009-01-0166
The need for greater capacity in automotive transportation (in the midst of constrained resources) and the convergence of key technologies from multiple domains may eventually produce the emergence of a “swarm” concept of operations. The swarm, a collection of vehicles traveling at high speeds and in close proximity, will require management techniques to ensure safe, efficient, and reliable vehicle interactions. We propose a shared-autonomy approach in which the strengths of both human drivers and machines are employed in concert for this management. A fuzzy logic-based control implementation is combined with a genetic algorithm to select the shared-autonomy architecture and sensor capabilities that optimize swarm operations.
Technical Paper

Effects of Window Seal Mechanical Properties on Vehicle Interior Noise

2003-05-05
2003-01-1703
One dominant “wind noise” generating mechanism in road vehicles is the interaction between turbulent flows and flexible structures which include side glass windows. In this study, the effects of seal mechanical properties on the sound generated from flow-induced vibration of side glass windows were investigated. The primary goal was to assess the influence of seal support properties on the noise generated from a plate. Two different models to calculate the optimal support stiffness of the seal that minimizes the velocity response are presented. The results show that both the velocity response and the sound radiation are strongly influenced by dissipation of vibration energy at the edges. It is demonstrate that support tuning can yield significant noise and vibration reduction.
Technical Paper

Lattice Boltzmann Simulations of Flows in a Duct with Multiple Inlets

2003-03-03
2003-01-0220
In this paper, computations of pulsating flows in a duct with multiple inlets using the lattice Boltzmann method (LBM) are reported. As future emissions standards present a significant challenge for Diesel engine manufacturers, several options are being investigated to identify strategies to meet such regulations. Exhaust gas aftertreatment is one of the most important among them. As the performance of the various aftertreatment devices is sensitive to the flow conditions in the exhaust, a greater understanding of the flows under pulsating conditions in the presence of multiple cylinders is needed. The Lattice Boltzmann Method (LBM) is a relatively new and promising computational approach for applications to fluid dynamics problems. Two advantages of the method relative to traditional methods are ease of implementation and ease of parallelization and performance on parallel computers.
Technical Paper

Numerical Modeling of the Damping Effect of Fibrous Acoustical Treatments

2001-04-30
2001-01-1462
The damping effect that is observed when a fibrous acoustical treatment is applied to a thin metal panel typical of automotive structures has been modeled by using three independent techniques. In the first two methods the fibrous treatment was modeled by using the limp frame formulation proposed by Bolton et al., while the third method makes use of a general poro-elastic model based on the Biot theory. All three methods have been found to provide consistent predictions that are in excellent agreement with one another. An examination of the numerical results shows that the structural damping effect results primarily from the suppression of the nearfield acoustical motion within the fibrous treatment, that motion being closely coupled with the vibration of the base panel. The observed damping effect is similar in magnitude to that provided by constrained layer dampers having the same mass per unit area as the fibrous layer.
X