Refine Your Search

Topic

Search Results

Journal Article

Cosmetic Corrosion Test for Aluminum Autobody Panels: Final Report

2010-04-12
2010-01-0726
Over the past several years a task group within the SAE Automotive Corrosion and Protection (ACAP) Committee has conducted extensive on-vehicle field testing and numerous accelerated lab tests with the goal of establishing a standard accelerated test method for cosmetic corrosion evaluations of finished aluminum auto body panels. This project has been a cooperative effort with OEM, supplier, and consultant participation and was also supported in part by DOE through USAMP (AMD 309). The focus of this project has been the identification of a standardized accelerated cosmetic corrosion test that exhibits the same appearance, severity, and type of corrosion products that are exhibited on identical painted aluminum panels exposed to service relevant environments. Multi-year service relevant exposures were conducted by mounting panels on-vehicles in multiple locations in the US and Canada.
Journal Article

Development of an Improved Cosmetic Corrosion Test for Finished Aluminum Autobody Panels

2008-04-14
2008-01-1156
A task group within the SAE Automotive Corrosion and Protection (ACAP) Committee continues to pursue the goal of establishing a standard test method for in-laboratory cosmetic corrosion evaluations of finished aluminum auto body panels. The program is a cooperative effort with OEM, supplier, and consultant participation and is supported in part by USAMP (AMD 309) and the U.S. Department of Energy. Numerous laboratory corrosion test environments have been used to evaluate the performance of painted aluminum closure panels, but correlations between laboratory test results and in-service performance have not been established. The primary objective of this project is to identify an accelerated laboratory test method that correlates with in-service performance. In this paper the type, extent, and chemical nature of cosmetic corrosion observed in the on-vehicle exposures are compared with those from some of the commonly used laboratory tests
Technical Paper

Development of an Improved Cosmetic Corrosion Test for Finished Aluminum Autobody Panels

2007-04-16
2007-01-0417
Since 2000, an Aluminum Cosmetic Corrosion task group within the SAE Automotive Corrosion and Protection (ACAP) Committee has existed. The task group has pursued the goal of establishing a standard test method for in-laboratory cosmetic corrosion evaluations of finished aluminum auto body panels. A cooperative program uniting OEM, supplier, and consultants has been created and has been supported in part by USAMP (AMD 309) and the U.S. Department of Energy. Prior to this committee's formation, numerous laboratory corrosion test environments have been used to evaluate the performance of painted aluminum closure panels. However, correlations between these laboratory test results and in-service performance have not been established. Thus, the primary objective of this task group's project was to identify an accelerated laboratory test method that correlates well with in-service performance.
Technical Paper

Development of an Improved Cosmetic Corrosion Test for Finished Aluminum Autobody Panels

2005-04-11
2005-01-0542
A co-operative program initiated by the Automotive Aluminum Alliance and supported by USAMP continues to pursue the goal of establishing an in-laboratory cosmetic corrosion test for finished aluminum auto body panels that provides a good correlation with in-service performance. The program is organized as a task group within the SAE Automotive Corrosion and Protection (ACAP) Committee. Initially a large reservoir of test materials was established to provide a well-defined and consistent specimen supply for comparing test results. A series of laboratory procedures have been conducted on triplicate samples at separate labs in order to evaluate the reproducibility of the various lab tests. Exposures at OEM test tracks have also been conducted and results of the proving ground tests have been compared to the results in the laboratory tests. Outdoor tests and on-vehicle tests are also in progress. An optical imaging technique is being utilized for evaluation of the corrosion.
Technical Paper

Perforation Corrosion Performance of Autobody Steel Sheet in On-Vehicle and Accelerated Tests

2003-03-03
2003-01-1238
The Auto/Steel Partnership Corrosion Project Team has completed a perforation corrosion test program consisting of on-vehicle field exposures and various accelerated tests. Steel sheet products with eight combinations of metallic and organic coatings were tested, utilizing a simple crevice coupon design. On-vehicle exposures were conducted in St. John's and Detroit for up to seven years to establish a real-world performance standard. Identical test specimens were exposed to the various accelerated tests, and the results were compared to the real-world standard. This report documents the results of these tests, and compares the accelerated test results (including SAE J2334, GM9540P, Ford APGE, CCT-I, ASTM B117, South Florida Modified Volvo, and Kure Beach (25-meter) exposures) to the on-vehicle tests. The results are compared in terms of five criteria: extent of corrosion, rank order of material performance, degree of correlation, acceleration factor, and control of test environment.
Technical Paper

Dent Resistance of Medium Scale Aluminum Structural Assemblies

2001-03-05
2001-01-0757
This work outlines the evaluation of static and dynamic dent resistance of medium scale structural assemblies fabricated using AA6111 and AA5754. The assemblies fabricated attempt to mimic common automotive hood designs allowing for a parametric study of the support spacing, sheet thickness and panel curvature. Closure panels of AA6111, of two thicknesses (0.8, and 0.9mm), are bonded to re-usable inner panels fabricated using AA5754 to form the structural assemblies tested. While normal practice would use the same alloy for both the inner and the outer, in the current work, AA5754 was adopted for ease of welding. Numerical simulations were performed using LS DYNA. A comparison of experimental and numerically simulated results is presented. The study attempts to establish an understanding of the relationship between structural support conditions and resulting dent depths for both static and dynamic loading conditions.
Technical Paper

Crashworthiness of Aluminum-Structured Vehicles

1998-05-31
986018
Today,due to concerns about the emission of greenhouse gases and the Kyoto Protocol, there is increasing interest in the use of aluminum for reducing the weight of passenger cars to reduce fuel consumption and exhaust emissions, particularly CO2. In recent years, several aluminum-structured cars have been developed and are in service in various parts of the world, all of which have met the relevant vehicle safety requirements. However, concern continues to be raised about the crashworthiness of lightweight vehicles. This paper will summarize data on the energy absorption of aluminum automotive materials and structures under impact collapse conditions as well as published information from the automotive industry on the crashworthiness of two aluminum-intensive vehicles.
Technical Paper

Aluminum Wheel Alloy Variants: Effects on Corrosion Performance

1998-02-23
980461
Previous work has shown that variations in wheel alloy chemistry, particularly with respect to copper and iron levels, can have a pronounced effect on filiform corrosion performance. In this study, an examination of A356.2 alloy chemistry variants and their effects on corrosion was carried out in greater detail. The emphasis was on copper and iron variants, both alone and in combination. Copper levels ranged from 0.005 to 0.22% and iron from 0.04 to 0.23%. The effect of manganese additions was also examined, with levels ranging from 0.002 to 0.07%. In addition to the alloying variants, the level of dispersed oxides in the castings was varied to determine any effects on corrosion performance. Although filiform corrosion performance of painted samples was the primary focus of this study, the corrosion behaviour of unpainted samples was also evaluated for comparison purposes.
Technical Paper

Methods for Assessing the Corrosion Behaviour of Heat Exchanger Materials and Components

1997-05-19
971787
To determine the true galvanic compatibility of radiator components a test has been developed using a zero resistance ammeter (ZRA) technique, which measures the magnitude of the galvanic current between different materials, thus allowing specific corrosion rates to be calculated. It is believed that the use of the ZRA technique will help provide a better balance between sacrificial behaviour and thermal performance of fin alloys. In particular, it will be demonstrated that it is not necessary to make additions of zinc to the fin alloys to attain a sacrificial effect, which in the longer term may compromise the recyclability of radiator units.
Technical Paper

The Significance of Environment for Performance of Structural Adhesive Bonding

1997-02-24
970012
The development of a durable adhesive bonding technology for joining of aluminium automotive structures requires a full understanding of the importance of the environment on the chemistry of the adhesively bonded system. This paper describes the accelerated testing procedures used by Alcan to provide information on the significance of environmental factors on adherend surface, the bonding interface and adhesive and so establish the best combination of adhesive and surface pretreatment for good long term durability. The stress/humidity test provides information on adhesive and interface performance, while the neutral salt spray test illustrates durability and corrosion resistance of the pretreatment. Outdoor exposure testing provides the means of comparing the accelerated tests with real life durability.
Technical Paper

Processes for the Recycling of Sheet and Other Wrought Alloys from Aluminum Intensive Vehicles

1997-02-24
970017
This paper will describe the main features of two newly-developed enabling technologies for the future establishment of an integrated system to recover the full value of the aluminum from scrapped aluminum intensive vehicles. These technologies are fluidized bed decoating and alloy sorting using analysis by laser induced optical emission spectroscopy. Aluminum Intensive Vehicles will employ substantial quantities of sheet material, most of which will have fairly heavy paint coatings and possibly adhesives. While it may be possible to remove and segregate some of the closure panels and the major aluminum castings, the main body structure will need to be shredded to facilitate both the separation of the various aluminum and other materials and also the subsequent thermal decoating of paint films and adhesives. The decoating is necessary to ensure complete pyrolysis of the coatings and to avoid the excessive dross losses encountered when as-painted scrap is remelted.
Technical Paper

How to Weld Bond Aluminium with Structural Adhesives

1997-02-24
970018
Weld bonding of aluminium autobody structures offers automotive vehicle manufacturers the opportunity of achieving significant weight reduction, compared to equivalent steel structures. Further, this is achievable using volume production manufacturing methods. This paper considers all key aspects of the weld bonding process, in particular the equipment requirements and the factors that are important in reliably achieving satisfactory structures. Methods of minimising damage to the adhesive bondline and assessment of spot weld quality are discussed. Using experience gained from extensive weld bonding trials, suitable parameters for robust weld bonding are recommended.
Technical Paper

Effects of Alloy Composition and Condition on Filiform Corrosion Performance of Cast Aluminum Wheels

1997-02-24
970021
The movement towards extended warranties in the automobile industry has focussed attention on corrosion performance of many components, particularly cast aluminum wheels. Filiform corrosion is of particular concern since it can severely affect the appearance of the wheel. The appearance and the choice of wheel design are the most attractive features to customers. In order to enhance the filiform corrosion resistance of cast aluminum wheels, cleaning, pretreatment, coating and alloy parameters are critical and need to be optimized. In this paper, the effects of alloy composition and condition on filiform corrosion are reviewed. A series of cast discs were prepared with variations in iron, zinc and copper levels around the standard A356.2 alloy composition. Apart from composition, certain specimens were subjected to different heat treatment and ageing conditions. The effects of porosity and different machining procedures were also evaluated.
Technical Paper

Reduced Finishing Costs for Aluminum Intensive Vehicles

1996-02-01
960170
Due to the inherently superior corrosion resistance of aluminum compared to automotive steels, phosphating and electrocoating are not necessarily required to provide good corrosion protection to aluminum intensive vehicles. This allows the potential for significant cost savings in the overall finishing process by eliminating these steps. Advantage can also be taken of the movement towards the use of powder primer surfacers to reduce solvent emissions in that the powder coating can be applied directly to a suitably pretreated aluminum surface. Pretreatments which are optimized for aluminum and much simpler to control than phosphating were chosen for trials based upon discussions with chemical suppliers. In this paper, the adhesion and corrosion characteristics of these selected pretreatment/powder primer systems were compared to standard phosphated and electrocoated AA6111 automotive closure sheet.
Technical Paper

Composition Based Sorting of Aluminum Scrap from Aluminum Intensive Vehicles

1996-02-01
960163
The feasibility of applying laser induced optical emission spectroscopy to the high speed sorting of mixed-alloy aluminum scrap from automobiles has been established. The basic spectroscopy for analysing aluminum alloys for the major alloying elements is reviewed and key technical issues solved in developing the total sorting system are highlighted. Opportunities to apply this technology to the recycling of scrapped automobiles are discussed.
Technical Paper

The Properties and Characteristics of Two New Aluminum Automotive Closure Panel Materials

1996-02-01
960164
The need to reduce or contain a weight increase in new automobile designs is leading to the use of more and more aluminum and, in particular, to the adoption of aluminum outer body panels in a number of volume production vehicles. This has been made possible by improvements in the properties of heat treatable aluminum sheet materials and also from a better understanding of the issues related to part design and manufacturing. The alloy AA6111 has become the material of choice due to its unique combination of formability and paint bake strengthening and is used, for example, in the deck lids of the current Ford Crown Victoria, Grand Marquis and Taurus/Sable models. A modified process for this alloy has now been developed which significantly increases its paint bake strengthening and can be used either to obtain even better dent resistance or to reduce the gauge and hence obtain cost and weight savings.
Technical Paper

Development of an Understanding of the Critical Factors Influencing Waterside Corrosion Behaviour of Brazed Aluminium Radiators

1994-03-01
940499
The application of aluminium alloy materials for automotive heat exchangers, including engine cooling and air conditioning systems, is now widespread. To meet the industry demands of both extended service life and improved reliability for heat exchanger components, it is important that the critical factors influencing corrosion behaviour are properly understood, particularly with the trend towards downgauging of materials. To maximise resistance to waterside corrosion, manufacturers have adopted the approach of using an internal cladding, commonly a high purity or zinc - containing alloy, to provide sacrificial protection of the core material. Recent studies have shown that the presence of an internal cladding can, under certain conditions, promote rapid localised attack of the core alloy.
Technical Paper

NOCOLOK™ Sil Flux - A Novel Approach for Brazing Aluminum

1994-03-01
940502
The need to reduce the weight of automobiles has favored the widespread use of aluminum in automotive ventilation and cooling systems. Space, weight restrictions, the need for increased thermal efficiency, and recycling legislation have all contributed to new designs for heat exchangers. In many cases there has been a move to using extruded tube rather than seam-welded tube, leading to a reliance on the relatively more expensive clad fin. A new process, NOCOLOK™ Sil flux brazing, offers the potential for materials cost savings through the use of “in-situ” filler metal generation. This eliminates the need for using clad brazing materials. It can be applied to a number of alloy systems and product forms. This new technology is firmly rooted in the well established NOCOLOK™ non-corrosive aluminum brazing flux system.
Technical Paper

The Lincoln Mark VIII Cast Aluminium Suspension Control Arm (Parallel Development)

1994-03-01
940874
An A356T61 cast aluminum lower suspension control arm has been put into production for the Lincoln Mark VIII. The mechanical requirements which drive the design for a critical part like this are discussed, together with some of the background knowledge needed to address the issues surrounding alloy and process selection. Particularly as it must be realized that the process impacts the degree to which the potential of the alloy can be realized. With this in mind, some of the research activities which have been spawned in parallel with the production activities are briefly covered. The sequence of events involved in the design and prototyping of the part itself are outlined, as is the implementation of a specialized low pressure casting line to produce the part. Part performance to date has been excellent and the quality controls and test methods which have been put in place to see that this remains so are also covered.
Technical Paper

Development of a Long Life Aluminium Brazing Sheet Alloy with Enhanced Mechanical Performance

1994-03-01
940505
The use of aluminium alloys for automotive heat exchangers has increased considerably in the last 15-20 years and, in parallel, new alloys have been developed to meet the increased demand for strength and improved corrosion resistance. A non-heat treatable Al-Mn alloy, X800, has been developed by Alcan to significantly increase the corrosion resistance of radiator tubes when subjected to typical service environments. The alloy development employed considerable microstructural understanding to provide heat exchanger manufacturers with an improved product that readily attained enhanced performance during any brazing cycle. A similar philosophy has been adopted to address the issue of increased mechanical performance, higher intrinsic sheet strength, both during and after brazing, provides the opportunity for sheet downgauging and thus lightweighting of components.
X