Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Fatigue Analysis and Rapid Design Process of Anti-vibration Rubber Parts for Automobiles

2024-04-09
2024-01-2255
In recent years, an increase in vehicle weight due to the electrification of automobiles, specifically EVs, has increased the input loads on anti-vibration rubber parts. Moreover, the characteristics of these loads have also changed due to the rotational drive of electric motors, regenerative braking, and other factors. When designing a vehicle, in advance it is necessary to set specifications that take into account the spring characteristics and durability of the anti-vibration rubber parts in order to meet functional requirements. In this study, the hyperelastic and fatigue characteristics (S-N diagram and Haigh diagram) of Rubbers which is widely used for anti-vibration rubber parts, were experimentally obtained, and structural and fatigue analyses using FEM (Finite Element Method) were conducted in conjunction with spring and fatigue tests of anti-vibration rubber parts to determine the correlation between their spring and fatigue characteristics.
Technical Paper

Investigation of Fuel Economy Prediction Technology Considering Engine Thermal Flow for Hybrid Electric Vehicle, and Application to Vehicle Development Process

2024-04-09
2024-01-2408
Powertrain development requires an efficient development process with no rework and model-based development (MBD). In addition, to performance design that achieves low CO2 emissions is also required. Furthermore, it also demands fuel economy performance considering real-world usage conditions, and in North America, the EPA (U.S. Environmental Protection Agency) 5-cycle, which evaluates performance in a combination of various environments, is applied. This evaluation mode necessitates predicting performance while considering engine heat flow. Particularly, simulation technology that considers behavior based on engine temperature for Hybrid Electric Vehicle (HEV) is necessary. Additionally, in the development trend of vehicle aerodynamic improvement, variable devices like Active Grille Shutter (AGS) are utilized to contribute to reducing CO2 emissions.
Technical Paper

Numerical Investigation of Knocking in a Small Two-Stroke Engine with a High Compression Ration to Improve Thermal Efficiency

2023-09-29
2023-32-0079
This study aimed to achieve both a high compression ratio and low knock intensity in a two-stroke engine. Previous research has suggested that knock intensity can be reduced by combining combustion chamber geometry and scavenging passaging design for the same engine specifications with a compression ratio of 13.7. In this report, we investigate whether low knock intensity can be achieved at compression ratios of 14.4 and 16.8 by adjusting the combustion chamber geometry and scavenging passage design. As a result, the mechanism by which combustion chamber geometry and scavenging passage design change knock intensity was clarified.
Technical Paper

Engine Knocking Detection by Measuring Cylinder Pressure, Combustion Flame, Vibration and Radiation Noise

2023-09-29
2023-32-0080
Knocking is an important issue in improving the efficiency of spark ignition engines. It can be detected by photographing with high-speed cameras or measuring in-cylinder pressure or engine vibration or engine radiation sound. However, these methods each have the problems for example sensor damage risk or necessity of machining the engine. In this paper, we propose the efficient measurement method and the effective evaluation method with the restricted measurement results for engine knocking detection by utilizing the simultaneous measurement results of knocking with these sensors.
Technical Paper

Effect of Olefin Component Mixed to Gasoline on Thermal Efficiency in EGR Diluted Conditions Using Single-Cylinder Engine

2023-09-29
2023-32-0084
In internal combustion engine development, the ongoing research can be mainly classified into two categories based on the purpose: limiting exhaust emissions and searching for alternative fuels. One of the effective approaches reduce emissions is the improvement of thermal efficiency. Certain types of alternative fuels derived from renewable resources were estimated to confirm the thermal efficiency. This study uses a single-cylinder engine added with olefin and oxygenated additive fuel, such as 1-hexene, ethanol, and ETBE, to evaluate the parameters that affect thermal efficiency. Furthermore, the effects of various additive fuels are summarized and essential information is provided for determining next- generation fuel composition.
Technical Paper

Effects of pre-chamber specifications on lean burn operation in a pre-chamber engine with fuel reformed gas

2023-09-29
2023-32-0007
Lean combustion has been well known to be an effective method to improve the thermal efficiency. However, leaner mixture is prone to cause the unstable combustion and poorer unburned hydrocarbon (UTHC) emissions. Pre-chamber turbulent jet combustion has been proved to enhance the combustion stability under ultra-lean conditions. However, more NOx is formed during the combustion, resulting in the fact that the tailpipe NOx emission is too high to be still not available for the real application. In this report, in order to achieve a higher air excess ratio while keeping lower UTHC emissions, and especially NOx emission, a new combustion technique which combined pre-chamber jet combustion with fuel reforming was proposed and experimentally demonstrated on a pre-chamber engine.
Technical Paper

Numerical and Experimental Analysis of Abnormal Combustion in a SI Gasoline Engine with a Re-Entrant Piston Bowl and Swirl Flow

2022-01-09
2022-32-0038
Some SI (spark-ignition) engines fueled with gasoline for industrial machineries are designed based on the conventional diesel engine in consideration of the compatibility with installation. Such diesel engine-based SI engines secure a combustion chamber by a piston bowl instead of a pent-roof combustion chamber widely applied for SI engines for automobiles. In the development of SI engines, because knocking deteriorates the power output and the thermal efficiency, it is essential to clarify causes of knocking and predict knocking events. However, there has been little research on knocking in diesel engine-based SI engines. The purpose of this study is to elucidate knocking phenomena in a gasoline engine with a re-entrant piston bowl and swirl flow numerically and experimentally. In-cylinder visualization and pressure analysis of knock onset cycles have been experimentally performed. Locations of autoignition have been predicted by 3D-CFD analysis with detailed chemical reactions.
Technical Paper

Analysis of Cylinder to Cylinder Variations in a Turbocharged Spark Ignition Engine at lean burn operations

2022-01-09
2022-32-0044
In recent years, the improvement in the fuel efficiency and reduction in CO2 emission from internal combustion engines has been an urgent issue. The lean burn technology is one of the key technologies to improve thermal efficiency of SI engines. However, combustion stability deteriorates at lean burn operations. The reduction in cycle-to-cycle and cylinder-to-cylinder variations is one of the major issues to adapt the lean burn technique for production engines. However, the details of the causes and mechanisms for the combustion variations under the lean burn operations have not been cleared yet. The purpose of this study is to control cylinder to cylinder combustion variation. A conventional turbocharged direct injection SI engine was used as the test engine to investigate the effect of engine control parameters on the cylinder to cylinder variations. The engine speed is set at 2200 rpm and the intake pressure is set at 58, 78, 98 kPa respectively.
Technical Paper

Investigation on Relationship between LSPI and Lube Oil Consumption and Its Countermeasure

2021-04-06
2021-01-0567
LSPI (Low speed pre-ignition) is a serious issue in highly boosted gasoline engines. The causes have been studied and lube oil affects the onset. In order to examine the effect of lubricating oil consumption on super knock caused by pre-ignition, measurements of in-cylinder pressure, temperature, oil consumption by sulfur trace at steady and transient conditions were conducted. Also, new piston ring pack was applied to reduce both of blow-by gas and oil consumption. As a result, accumulated oil during deceleration was found to cause pre-ignition after acceleration. The pre-ignition frequency is much higher than in steady condition, however, the amount of oil does not directly affect pre-ignition frequency, but dilution of oil and evaporation of oil/fuel and other parameters, such as temperature, pressure, and oil additives determine pre-ignition onset. In order to see the mechanism of pre-ignition onset, numerical simulations were conducted.
Technical Paper

On Road Fuel Economy Impact by the Aerodynamic Specifications under the Natural Wind

2020-04-14
2020-01-0678
According to some papers, the label fuel economy and the actual fuel economy experienced by the customers may exhibit a gap. One of the reasons may stem from the aerodynamic drag variations due to the natural wind. The fuel consumption is measured through bench test under several driving modes by using the road load as input condition. The road load is measured through the coast down test under less wind ambient conditions as determined by each regulation. The present paper aims to analyze the natural wind conditions encountered by the vehicle on public roads and to operate a comparison between the fuel consumptions and the driving energy. In this paper, the driving energy is calculated by the aerodynamic drag from the natural wind specifications and driving conditions. This driving energy and the fuel consumptions show good correlation. The fuel consumption is obtained from the vehicle Engine control unit(ECU) data.
Technical Paper

Onboard Ethanol-Gasoline Separation System for Octane-on-Demand Vehicle

2020-04-14
2020-01-0350
Bioethanol is being used as an alternative fuel throughout the world based on considerations of reduction of CO2 emissions and sustainability. It is widely known that ethanol has an advantage of high anti-knock quality. In order to use the ethanol in ethanol-blended gasoline to control knocking, the research discussed in this paper sought to develop a fuel separation system that would separate ethanol-blended gasoline into a high-octane-number fuel (high-ethanol-concentration fuel) and a low-octane-number fuel (low-ethanol-concentration fuel) in the vehicle. The research developed a small fuel separation system, and employed a layout in which the system was fitted in the fuel tank based on considerations of reducing the effect on cabin space and maintaining safety in the event of a collision. The total volume of the components fitted in the fuel tank is 6.6 liters.
Technical Paper

Elucidation of the Sulfide Corrosion Mechanism in Piston Pin Bushings

2020-04-14
2020-01-1079
Recent trends to downsize engines have resulted in lighter weight and greater compactness. At the same time, however, power density has increased due to the addition of turbocharger and other such means to supplement engine power and torque, and this has increased the thermal and mechanical load. In this kind of environment, corrosion of the copper alloy bushing (piston pin bushing) that is press-fitted in the small end of the connecting rod becomes an issue. The material used in automobile bearings, of which the bushing is a typical example, is known to undergo sulfidation corrosion through reaction with an extreme-pressure additive Zinc Dialkyldithiophosphate (ZnDTP) in the lubricating oil. However, that reaction path has not been clarified. The purpose of the present research, therefore, is to clarify the reaction path of ZnDTP and copper in an actual engine environment.
Journal Article

Metal Belt CVT Seizure Monitoring System Using Wear Debris Analysis and Particle Measurement

2020-04-14
2020-01-0907
An apparatus that automatically samples lubricating oil and measures the size distribution of particles in the oil has been developed in order to monitor the state of engines and transmissions in operation. It is a widely known fact that when an engine or transmission seizes or experiences unusual wear, comparatively large pieces of wear debris are released. The goal of the use of the apparatus is to detect these particles of wear debris, stop testing before damage occurs, and clarify the causes. Seizure was, therefore, artificially induced in a transmission, and the wear debris in the oil was closely analyzed following the test. The results showed that when the simulated seizure occurred, large, elongated particles of wear debris were produced. Similar wear debris was observed in oil recovered from the market following the seizure of a component, and at present this is believed to be a type of wear debris characteristic of seizure.
Technical Paper

Multi-Objective Optimization of Control Parameters for Hybrid and Electric Vehicles Using 1D CAE Model

2020-04-14
2020-01-0247
Since the operation of the powertrain system and the engine speed and torque are determined in the ECU in hybrid vehicles, control parameters in these vehicles are more sensitive to a variety of performance factors than those employed in conventional vehicles. The three performance factors acceleration performance, NVH and fuel consumption in particular are in a tradeoff relationship, the calibration of control parameters in order to satisfy these performance targets entail considerable development costs. Given this, it is possible to increase the efficiency of hybrid vehicle development by determining Pareto design solutions for the three performance factors via multi-objective optimization using CAE, and selecting target performance and control parameters based on these Pareto design solutions.
Technical Paper

Performance Investigation of a PFI Gasoline Engine by Applying Various Kinds of Fuel Injectors

2020-01-24
2019-32-0546
In this report, the effect of injection specification, such as droplet size, lengths of nozzle tip and spray angle, on the engine performance was investigated using a 1.2 L port fuel injection (PFI) four-cylinder gasoline engine. The experimental conditions were selected to cover the daily operating mode, including the cold start and catalyst heating process. The experiments were conducted by varying not only the injectors but also the injection timing which was shifted from the exhaust to intake stroke. The results were evaluated by the fuel consumption and exhaust gas emissions. When these tests were conducted on a production engine, a carefully designed tumble generator was installed at the intake port to enhance the intake air flow. As a result, the injection specifications showed a potential to obtain less fuel consumption and lower engine-out emissions was evaluated.
Technical Paper

Numerical Simulation of In-Cylinder Particulate Matter Formation in Diesel Combustion by CFD Coupled with Chemical Kinetics Model

2019-12-19
2019-01-2277
A reduced chemical kinetic model of diesel fuel, which can be applied to computational fluid dynamics (CFD) simulation coupled with detailed chemistry using the CONVERGE software, is developed to simulate the particulate matter (PM) formation process. We analyzed the influence of varying intake oxygen concentrations and fuel composition on the polycyclic aromatic hydrocarbons (PAHs) and soot formation processes. When the intake oxygen concentration was decreased, no significant difference was observed in PAH formation associated with soot formation, and the soot mass generated after the peak was high. When the fuel contained high levels of aromatics and naphthene, the PAH and soot formation mass increased. These tendencies were in good agreement with experimental results [1].
Technical Paper

Effects of Coolant Temperature and Fuel Properties on Soot Emission from a Spark-ignited Direct Injection Gasoline Engine

2019-12-19
2019-01-2352
Effects of measurement method, coolant temperature and fuel composition on soot emissions were examined by engine experiments. By reducing the pressure fluctuation in the sampling line, the measured soot emissions with better stability and reproducibility could be obtained. With lower coolant temperatures, larger soot emissions were yielded at much advanced fuel injection timings. Compared to gasoline, soot emissions with a blend fuel of normal heptane, isooctane and toluene were significantly decreased, suggesting the amounts of aromatic components (toluene or others) should be increased to obtain a representative fuel for the predictive model of particulate matter in SIDI engines.
Technical Paper

Effects of Engine Operating Condition and Fuel Property on Pre-Ignition Phenomenon in a Highly Boosted Premixed Natural Gas Engine

2019-12-19
2019-01-2154
The stochastic pre-ignition phenomenon plays a vital role to limit the further increasing BMEP for natural gas engines. In this study, the pre-ignition propensities were examined in a highly boosted premixed natural gas engine by various engine loads and air/fuel ratios, as well as different methane number (MN) altered by hydrogen addition. A proper pre-ignition evaluation method was proposed referring to intake temperature. Moreover, the limits of in-cylinder temperature and pressure for the onset of pre-ignition were estimated. The results show that both higher IMEP and richer mixture conditions readily lead to pre-ignition. The significant increases of pre-ignition frequency and heavy-knocking pre-ignition cycle present with lowering MN.
Technical Paper

An Investigation of a Reduction Method of the Body Vibration at a Situation of Engine Start-Stop

2019-04-02
2019-01-0785
In recent years, electrification of powertrains has been promoted to improve fuel efficiency and CO2 emissions. Along with electrification, it is possible to reduce engine usage frequency and improve the fuel efficiency in traveling. Especially in a hybrid electric vehicle (HEV), the state changes from motor assist mode to engine firing mode. As a result, stay time in eigenvalue of a powertrain is shortened, and vibration of the vehicle body at the engine start situation is able to be reduced as compared with conventional engine-driven vehicle. However, since the HEV is equipped with a high compression ratio engine for improving fuel economy, there is cause for concern that excitation force generated by the powertrain at the time of engine start increases. Also, the vehicle body vibration at engine start situations requires further consideration, because the operation frequency of engine decreases.
Technical Paper

Development of Low Temperature Active Three Way Catalyst

2019-04-02
2019-01-1293
In recent years, fuel efficiency has been improved by using many technologies such as downsizing engine, turbocharger and direct injection to reduce CO2 emissions from vehicle. However, the temperature of the exhaust gas from the engines using these technologies becomes lower than that form conventional one. That increases the difficulty for three-way catalyst (TWC) to purify CO, HC and NOx enough because TWC is not warmed up just after engine starting. In order to reduce cold emission mentioned above, we have been studying the warmup strategy of which the key property is thermal mass of TWC. To achieve early warmup, thermal mass of TWC is reduced by lightening the weight of (1) substrate and (2) catalytic materials, namely washcoat amount. Along with the strategy, we have developed TWC with lightweight substrate and applied it from the 2016 model year CIVIC.
X