Refine Your Search

Search Results

Viewing 1 to 16 of 16
Technical Paper

Fuel Effects Study with In-Use Two-Stroke Motorcycles and All-Terrain-Vehicles

2013-10-14
2013-01-2518
This paper covers work performed for the California Air Resources Board and US Environmental Protection Agency by Southwest Research Institute. Emission measurements were made on four in-use off-road two-stroke motorcycles and all-terrain vehicles utilizing oxygenated and non-oxygenated fuels. Emission data was produced to augment ARB and EPA's off-road emission inventory. It was intended that this program provide ARB and EPA with emission test results they require for atmospheric modeling. The paper describes the equipment and engines tested, test procedures, emissions sampling methodologies, and emissions analytical techniques. Fuels used in the study are described, along with the emissions characterization results. The fuel effects on exhaust emissions and operation due to ethanol content and fuel components is compared.
Journal Article

Evaluation of the Impacts of Biofuels on Emissions for a California Certified Diesel Fuel from Heavy-Duty Engines

2013-04-08
2013-01-1138
The impact of biodiesel and new generation biofuels on emissions from heavy-duty diesel engines was investigated using a California Air Resources Board (CARB) certified diesel fuel as a base fuel. This study was performed on two heavy-duty diesel engines, a 2006 engine and a diesel particle filter (DPF) equipped 2007 engine, on an engine dynamometer over four different test cycles. Emissions from soy-based and animal-based biodiesel, renewable diesel fuel, and gas-to-liquid (GTL) diesel fuel were evaluated at blend levels ranging from 5 to 100%. Consistent with previous studies, particulate matter (PM), hydrocarbons (HC), and carbon monoxide (CO) emissions generally showed increasing reductions with increasing biodiesel and renewable/GTL diesel fuel blend levels for the non-DPF equipped engine. The levels of these reductions were generally comparable to those found in previous studies performed using more typical Federal diesel fuels.
Journal Article

Late Intake Valve Closing as an Emissions Control Strategy at Tier 2 Bin 5 Engine-Out NOx Level

2008-04-14
2008-01-0637
A fully flexible valve actuation (FFVA) system was developed for a single cylinder research engine to investigate high efficiency clean combustion (HECC) in a diesel engine. The main objectives of the study were to examine the emissions, performance, and combustion characteristics of the engine using late intake valve closing (LIVC) to determine the benefits and limitations of this strategy to meet Tier 2 Bin 5 NOx requirements without after-treatment. The most significant benefit of LIVC is a reduction in particulates due to the longer ignition delay time and a subsequent reduction in local fuel rich combustion zones. More than a 95% reduction in particulates was observed at some operating conditions. Combustion noise was also reduced at low and medium loads due to slower heat release. Although it is difficult to assess the fuel economy benefits of LIVC using a single cylinder engine, LIVC shows the potential to improve the fuel economy through several approaches.
Technical Paper

Regulated Emissions from Heavy Heavy-Duty Diesel Trucks Operating in the South Coast Air Basin

2006-10-16
2006-01-3395
Heavy duty diesel vehicle (HDDV) emissions are known to affect air quality, but few studies have quantified the real-world contribution to the inventory. The objective of this study was to provide data that may enable ambient emissions investigators to m,odel the air quality more accurately. The 25 vehicles reported in this paper are from the first phase of a program to determine representative regulated emissions from Heavy Heavy-Duty Diesel Trucks (HHDDT) operating in Southern California. Emissions data were gathered using a chassis dynamometer, full flow dilution tunnel, and research grade analyzers. The subject program employed two truck test weights and four new test modes (one was idle operation), in addition to the Urban Dynamometer Driving Schedule (UDDS), and the AC50/80 cycle. The reason for such a broad test cycle scope was to determine thoroughly how HHDDT emissions are influenced by operating cycle to improve accuracy of models.
Technical Paper

Emissions Correlation Between a Partial-Flow Diluter and The Full-Flow Constant Volume Sampler (CVS) for a Heavy-Duty Vehicle Under Steady-State Operation

2005-10-24
2005-01-3798
The California Air Resources Board (CARB) examined the performance of a Partial Flow Sampling System (PFSS) against a reference Constant Volume Sampling (CVS) system in measuring emissions from a heavy-duty vehicle (HDV) during dynamometer testing at CARB's Stockton Heavy-Duty Emissions Laboratory (SL). The SL PFSS system is a Sierra BG-2 system that uses flow-based (rather than CO2-based) dilution. The CVS system uses the University of California, Riverside's (UCR) Mobile Emissions Laboratory (MEL). The test vehicle was a 2000 model-year HD tractor powered by a CAT C-15 engine. Exhaust samples were collected simultaneously with the SL and MEL systems and analyzed for total particulate matter (PM), oxides of nitrogen (NOx), carbon dioxide (CO2), carbon monoxide (CO), and total hydrocarbons (THC). The samples were taken during steady-state vehicle operation. Each test mode was repeated seven times in each of two patterns: consecutive and sequential.
Technical Paper

Marine Outboard and Personal Watercraft Engine Gaseous Emissions, and Particulate Emission Test Procedure Development

2004-09-27
2004-32-0093
The U.S. EPA and the California Air Resources Board have adopted standards to reduce emissions from recreational marine vessels. Existing regulations focus on reducing hydrocarbons. There are no regulations on particulate emissions; particulate is expected to be reduced as a side benefit of hydrocarbon control. The goal of this study was to develop a sampling methodology to measure particulate emissions from marine outboard and personal watercraft engines. Eight marine engines of various engine technologies and power output were tested. Emissions measured in this program included hydrocarbons, carbon monoxide, oxides of nitrogen. Particulate emissions will be presented in a follow-up paper.
Technical Paper

Lean-Burn Characteristics of a Gasoline Engine Enriched with Hydrogen Plasmatron Fuel Reformer

2003-03-03
2003-01-0630
When hydrogen is added to a gasoline fueled spark ignition engine the lean limit of the engine can be extended. Lean running engines are inherently more efficient and have the potential for significantly lower NOx emissions. In the engine concept examined here, supplemental hydrogen is generated on-board the vehicle by diverting a fraction of the gasoline to a plasmatron where a partial oxidation reaction is initiated with an electrical discharge, producing a plasmatron gas containing primarily hydrogen, carbon monoxide, and nitrogen. Two different gas mixtures were used to simulate the plasmatron output. An ideal plasmatron gas (H2, CO, and N2) was used to represent the output of the theoretically best plasmatron. A typical plasmatron gas (H2, CO, N2, and CO2) was used to represent the current output of the plasmatron. A series of hydrogen addition experiments were also performed to quantify the impact of the non-hydrogen components in the plasmatron gas.
Technical Paper

Flammability Testing of Automotive Heating Ventilation and Air Conditioning Modules Made from Polymers Containing Flame Retardant Chemicals

2002-11-18
2002-01-3091
Flammability tests were conducted on one control HVAC module and two experimental automotive HVAC modules containing flame retardant chemicals. The HVAC modules were exposed to a heptane pool fire. All three HVAC modules burned under these conditions. The mass loss rates of the control and experimental HVAC modules were similar. The flame retardant chemicals caused a 50% reduction in the heat produced, a 751 - 897% increase in the carbon monoxide produced, a 4,867 - 5,567% increase in the gaseous hydrocarbon produced, and a 3,875 - 4,725% increase in the smoke produced when the HVAC modules burned under these conditions. These quantitative results are consistent with visual observations made during these tests that the experimental HVAC modules produced substantially more smoke than the control HVAC module.
Technical Paper

Formaldehyde Emission Control Technology for Methanol-Fueled Vehicles: Catalyst Selection

1992-02-01
920092
The use of methanol as a “clean fuel” appears to be a viable approach to reduce air pollution. However, concern has been expressed about potentially high formaldehyde emissions from stoichiometrically operated light-duty vehicles. This paper presents results from an emission test program conducted for the California Air Resources Board (CARB) and the South Coast Air Quality Management District (SCAQMD) to identify and evaluate advanced catalyst technology to reduce formaldehyde emissions without compromising regulated emission control. An earlier paper presented the results of evaluating eighteen different catalyst systems on a hybrid methanol-fueled test vehicle. (1)* This paper discusses the optimization of three of these catalyst systems on four current technology methanol-fueled vehicles. Emission measurements were conducted for formaldehyde, nonmethane organic gases (NMOG), methanol, carbon monoxide, and oxides of nitrogen emissions.
Technical Paper

The Effect of Gasoline Aromatics Content on Exhaust Emissions: A Cooperative Test Program

1990-10-01
902073
A cooperative vehicle exhaust emissions test program was conducted by the California Air Resources Board and Chevron Research and Technology Company. The focus of the program was to determine the effect of aromatics content on nitrogen oxides (NOx) emissions. The program consisted of testing nine vehicles on three different fuels. The fuels ranged in aromatics content from 10% to 30%.* Other fuel properties were held as constant as possible. The tests were conducted in two different laboratories. In addition to the measurement of criteria emissions (hydrocarbons, carbon monoxide, and NOx), some of the hydrocarbon emissions were speciated and a reactivity of the exhaust was calculated. Only slight changes in the exhaust emissions and reactivity were observed for a change in aromatics content from 30% to 10%.
Technical Paper

Vehicle Misfueling in California

1984-10-01
841355
There have been a half dozen surveys performed by the California Air Resources Board in California from December, 1977 to July, 1982 to determine the rate of vehicle misfueling in California. There has been great concern raised over misfueling which leads to the poisoning of catalysts and the subsequent increases in emissions of hydrocarbons, carbon monoxide and oxides of nitrogen. The results of observing refueling at service stations indicate a misfueling rate of about 2% which is much lower than what the U. S. Environmental Protection Agency figures indicate. Misfueling at self-serve stations is more than twice that noted at full-serve stations. The primary reasons given by motorists for misfueling are cheaper price of unleaded gasoline, performance (including pinging) and unavailability of unleaded fuel. Misfueling was accomplished primarily as a result of a modified restrictor or filler neck.
Technical Paper

The California Vehicle Emission Control Program — Past, Present and Future

1981-10-01
811232
Programs to control motor vehicle emissions originated in California as a result of Professor A.J. Haagen-Smit of the California Institute of Technology discovering that two invisible automobile emissions, hydrocarbons and oxides of nitrogen, react together in the presence of sunlight to form oxidants such as ozone, a principal ingredient of the infamous Los Angeles area “smog”. The State of California became the first government to regulate the emissions of new automobiles when it adopted requirements for the use of positive crankcase ventilation (PCV) valves beginning with the 1963 model year.
Technical Paper

Vehicle Misfueling in California During 1979

1980-02-01
800397
A survey of vehicle refueling practices in California during the gasoline shortage of 1979 indicates that the use of leaded gasoline in catalyst equipped vehicles was occurring at a rate of about 1.6%. This 1.6% “misfueling” rate is lower than has been predicted by the U.S. Environmental Protection Agency and is almost exclusively the result of the refueling that occurs at self-service gasoline pumps. About three-quarters of the misfueled vehicles were apparently operated on leaded gasoline routinely. Based on the effect that leaded fuel has on the exhaust emission characteristics of catalyst equipped vehicles it is estimated that misfueling in California is increasing hydrocarbon and carbon monoxide emissions by about 4% and 1.6%, respectively from late model passenger cars.
Technical Paper

General Motors Phase II Catalyst System

1978-02-01
780205
Three-way catalysts provide a means of catalytically achieving lower NOx emission levels while maintaining good control of HC and CO emissions. However, very accurate control of air-fuel ratio is necessary. The precise air-fuel ratio control required is accomplished by employing a closed loop fuel metering system in conjunction with an exhaust gas sensor and an electronic control unit. To gain production experience with this type of system, General Motors is introducing it on two 1978 engine families sold in California. One is a 2.5 litre L-4 engine and the other is a 3.8 litre V-6 engine. Closed loop controlled carburetors are used on both systems. This paper discusses these 1978 systems. The components used on both systems are described and emission and fuel economy results are reviewed.
Technical Paper

Vehicle Inspection and Maintenance-The California Program

1976-02-01
760557
Current California law requires the implementation of a mandatory annual vehicle emissions inspection and maintenance program in the South Coast Air Basin by 1978. The pilot phase of this inspection program is now in operation in the City of Riverside. This paper evaluates the Riverside program and an alternate program for their abilities to detect gross emitters and provide cost/effective emissions reductions. A surveillance program was conducted to evaluate the Riverside loaded-mode inspection regime and an alternate idle inspection regime. Emissions and fuel economy tests indicated that there was no significant difference between the two regimes. Each regime resulted in immediate reductions on repaired vehicles of 35-40% in hydrocarbon emissions and 30-35% in carbon monoxide emissions, with no significant change in oxides of nitrogen emissions. There was a small (1-4%) improvement in fuel economy, and the average repair cost was $20-25.
Technical Paper

Field Test of an Exhaust Gas Recirculation System for the Control of Automotive Oxides of Nitrogen

1972-02-01
720511
The California Air Resources Board conducted an extensive field test program to evaluate a vehicle exhaust recirculation system for control of oxides of nitrogen. The system utilized hot exhaust gases from the crossover and included certain modifications to the carburetion, choke, and crank case ventilation system. It was tested on two fleets of automobiles equipped wtih California approved HC and CO emission control devices. The test program involved periodic measurements of exhaust emissions and fuel consumption. The effect of the system on vehicle drivability, engine deposits, wear, and oil deterioration was also studied. The Atlantic Richfield Company, under contract to the Air Resources Board, equipped the vehicles with the recirculation system and performed the final engine inspection.
X