Refine Your Search

Topic

Author

Search Results

Technical Paper

Optimal Control of Mass Transport Time-Delay Model in an EGR

2020-04-14
2020-01-0251
This paper touches on the mass transport phenomenon in the exhaust gas recirculation (EGR) of a gasoline engine air path. It presents the control-oriented model and control design of the burned gas ratio (BGR) transport phenomenon, witnessed in the intake path of an internal combustion engine (ICE), due to the redirection of burned gases to the intake path by the low-pressure EGR (LP-EGR). Based on a nonlinear AMESim® model of the engine, the BGR in the intake manifold is modeled as a state-space (SS) output time-delay model, or alternatively as an ODE-PDE coupled system, that take into account the time delay between the moment at which the combusted gases leave the exhaust manifold and that at which they are readmitted in the intake manifold. In addition to their mass transport delay, the BGRs in the intake path are also subject to state and input inequality constraints.
Journal Article

Development and Validation of a New Zero-Dimensional Semi-Physical NOx Emission Model for a D.I. Diesel Engine Using Simulated Combustion Process

2015-04-14
2015-01-1746
Reducing NOx tailpipe emissions is one of the major challenges when developing automotive Diesel engines which must simultaneously face stricter emission norms and reduce their fuel consumption/CO2 emission. In fact, the engine control system has to manage at the same time the multiple advanced combustion technologies such as high EGR rates, new injection strategies, complex after-treatment devices and sophisticated turbocharging systems implemented in recent diesel engines. In order to limit both the cost and duration of engine control system development, a virtual engine simulator has been developed in the last few years. The platform of this simulator is based on a 0D/1D approach, chosen for its low computational time. The existing simulation tools lead to satisfactory results concerning the combustion phase as well as the air supply system. In this context, the current paper describes the development of a new NOx emission model which is coupled with the combustion model.
Technical Paper

Calibration Methodology in System Simulation to Predict Heat Transfer Along the Exhaust Line of a Diesel Engine

2014-04-01
2014-01-1184
Emission regulations have become increasingly stringent in recent years. Current regulations need the development of a new worldwide driving cycle which gives greater weight to the pollutants emitted during transient phases or cold starts. Powertrains contain a large number of components such as multistage turbocharger systems; exhaust gas recirculation, after-treatment devices and sometimes an electric motor. In this context, 0D predictive models of heat transfer in the exhaust line, calibrated with experimental data, are particularly interesting. Many investigations are related to the development of precise control laws in order to optimize the light-off of after-treatment elements during the engine starting phase. A better understanding of the thermal phenomena occurring in the exhaust line is necessary. To study the heat transfer in the exhaust line of a Diesel engine during transient conditions, the temperature in the exhaust line must be known precisely.
Technical Paper

Combined Modeling of Thermal Systems of an Engine in the Purpose of a Reduction in the Fuel Consumption

2013-09-08
2013-24-0142
The tightening restrictions, in terms of fuel consumption, have pushed the vehicle manufacturers and equipment suppliers into searching for innovative ways to reduce the carbon dioxide emissions. Along with the ameliorations added to the engine itself, additional systems are grafted to the engine in order to keep up with the ever-changing laws. Isolating the impact on the fuel consumption of an added system, by on board testing, is a complicated task. In this case, using simulation modeling allows the reduction of delays related to prototyping and testing. This paper presents modeling of various thermal systems in a vehicle and their interactions to evaluate the fuel consumption using AMESim software. As means to reduce the CPU cost of the model (calculation time), without decreasing its predictability, engine modeling has been done by two steps: high frequency model and mean value model.
Technical Paper

The Potential of Highly Premixed Combustion for Pollutant Control in an Automotive Two-Stroke HSDI Diesel Engine

2012-04-16
2012-01-1104
An innovative alternative to overcome the load limits of the early injection highly premixed combustion concept consists of taking advantage of the intrinsic characteristics of two-stroke engines, since they can attain the full load torque of a four-stroke engine as the addition of two medium load cycles, where the implementation of this combustion concept could be promising. In this frame, the main objective of this investigation focuses on evaluating the potential of the early injection HPC concept using a conventional diesel fuel combined with a two-stroke poppet valves engine architecture for pollutant control, while keeping a competitive engine efficiency. On a first stage, the HPC concept was implemented at low engine load, where the concept is expected to provide the best results, by advancing the start of injection towards the compression stroke and it was confirmed how it is possible to reduce NOX and soot emissions, but increasing HC and CO emissions.
Technical Paper

Experimental Study of an Automotive Diesel Engine Running with Stoichiometric Combustion

2012-04-16
2012-01-0699
Stoichiometric Diesel combustion (SDC, also called stoichiometric compression ignition) is a concept which tries to combine high efficiency of Diesel engine with the use of a relatively inexpensive three-way catalyst (TWC) for NOx post-treatment. A preliminary literature survey shows that relatively few studies have been performed in this regard. They show the major role of the injection system and the piston shape and confirm that a TWC effectively removes NOx, CO and HC on such an engine. The aim of this paper is to present an experimental study carried out on a modern turbocharged, common-rail automotive Diesel engine running under stoichiometric conditions. Most engine parameters are modified: EGR rate, inlet air temperature and pressure, injection strategy (single injection and split injection, start(s) of injection(s), rail pressure). A particular emphasis is put on intake strategies: the influence of boost pressure and EGR rate is studied; and two levels of swirl are tested.
Technical Paper

Intake System Diagnosis for Diesel Engine with Dual-Loop EGR

2012-04-16
2012-01-0904
This paper proposes a method to detect an intake manifold leakage for a Diesel engine with a dual loop EGR system. The intake manifold leak has a strong impact on the engine performances by changing the intake manifold burned gas ratio. This fault is analyzed according to the control structure used and also according to the EGR operating mode. The paper proposes a diagnosis algorithm to detect the intake manifold leak in sequential or simultaneous use of the two EGR paths. The sensors considered are the mass air flow meter, the intake manifold pressure sensor, the exhaust equivalence ratio sensor and the differential pressure sensor (across the HP EGR valve). The diagnosis is based on a criteria that uses the redundancy between these sensors and air system models or estimators. The diagnosis threshold depends on the engine operating conditions as well as the sensor or model dispersions.
Journal Article

Control-Oriented Modeling of a LNT-SCR Diesel After-Treatment Architecture

2011-04-12
2011-01-1307
Lean NOx trap (LNT) and Selective Catalytic Reduction catalysts (SCR) are two leading candidates for diesel NOx after-treatment. Each technology exhibits good properties to reduce efficiently diesel NOx emissions in order to match the forthcoming EURO 6 standards. NOx reduction in LNT is made through a two-step process. In normal (lean) mode, diesel engine exhausts NOx is stored into the NOx trap; then when necessary the engine runs rich during limited time to treat the stored NOx. This operating mode has the benefit of using onboard fuel as NOx reducer. But NOx trap solution is restrained by limited active temperature windows. On the other hand, NH₃-SCR catalysts operate in a wider range of temperature and do not contain precious metals. However, NH₃-SCR systems traditionally use urea-water solution as reducing agent, requiring thus additional infrastructure to supply the vehicles with enough reducer. These pros and cons are quite restrictive in classical LNT or NH₃-SCR architecture.
Journal Article

Experimental Study of Intake Conditions and Injection Strategies Influence on PM Emission and Engine Efficiency for Stoichiometric Diesel Combustion

2011-04-12
2011-01-0630
Pollutant emissions standards (such like EURO 6 in Europe) are increasingly severe and force a search of new in-cylinder strategies and/or aftertreatment devices / schemes at a reasonable cost. On a conventional Diesel engine an excess of air is usually used to allow very high combustion efficiencies and reasonable levels of soot which can then be after-treated in a diesel particulates filter (DPF). As a consequence, NOx emissions cannot be easily after-treated (lean NOx trap (LNT) and selective catalytic reduction (SCR) are quite expensive even if effective, solutions), as a result they are generally controlled by means of internal measures such as High Pressure (HP) or Low Pressure (LP) exhaust gas recirculation (EGR). In light of ever more stringent NOx emissions regulations, NOx aftertreatment devices seem to be becoming unavoidable.
Technical Paper

System Approach for NOx Reduction: Double LNT Diesel After-Treatment Architecture

2011-04-12
2011-01-1300
This paper presents an after-treatment architecture combining a close coupled NOx trap and an under floor NOx trap. Instead of simply increasing the volume of the catalyst, we propose to broaden the active temperature window by splitting the LNT along the exhaust line. In order to design this architecture, a complete 1D model of NOx trap has been developed. Validated with respect to experimental data, this model has been useful to define the two volumes of LNT, making significant savings on the test bench exploitation. However, one of the main difficulties to operate the proposed architecture is the NOx purge and sulfur poisoning management. In order to optimize the NOx and sulfur purge launches, we have developed a control strategy based on an embedded reduced LNT model. These strategies have been validated on different driving cycles, by the means of simulation and of vehicle tests using rapid prototyping tools.
Journal Article

Effects of Methane/Hydrogen Blends On Engine Operation: Experimental And Numerical Investigation of Different Combustion Modes

2010-10-25
2010-01-2165
The introduction of alternative fuels is crucial to limit greenhouse gases. CNG is regarded as one of the most promising clean fuels given its worldwide availability, its low price and its intrinsic properties (high knocking resistance, low carbon content...). One way to optimize dedicated natural gas engines is to improve the CNG slow burning velocity compared to gasoline fuel and allow lean burn combustion mode. Besides optimization of the combustion chamber design, hydrogen addition to CNG is a promising solution to boost the combustion thanks to its fast burning rate, its wide flammability limits and its low quenching gap. This paper presents an investigation of different methane/hydrogen blends between 0% and 40 vol. % hydrogen ratio for three different combustion modes: stoichiometric, lean-burn and stoichiometric with EGR.
Technical Paper

A Study of the Effects of 30% Biodiesel Fuel on Soot Loading and Regeneration of a Catalytic DPF

2007-07-23
2007-01-2023
Biofuels are a renewable energy source. When used as extenders for transportation fuels, biofuels contribute to the global reduction of Green House Gas and CO2 emissions from the transport sector and to security and independence of energy supply. On a “Well to Wheel” basis they are much more CO2 efficient than conventional fossil fuels. All vehicles currently in circulation in Europe are capable of using 5 % biodiesel. The introduction of higher percentages biodiesel needs new specific standards and vehicle tests validation. The development of vehicles compatible with 30% biodiesel blends in diesel fuel includes the validation of each part of both engine and fuel vehicle systems to guarantee normal operation for the entire life of the vehicle.
Technical Paper

Optimum Diesel Fuel for Future Clean Diesel Engines

2007-01-23
2007-01-0035
Over the next decades to come, fossil fuel powered Internal Combustion Engines (ICE) will still constitute the major powertrains for land transport. Therefore, their impact on the global and local pollution and on the use of natural resources should be minimized. To this end, an extensive fundamental and practical study was performed to evaluate the potential benefits of simultaneously co-optimizing the system fuel-and-engine using diesel as an example. It will be clearly shown that the still unused co-optimizing of the system fuel-and-engine (including advanced exhaust after-treatment) as a single entity is a must for enabling cleaner future road transport by cleaner fuels since there are large, still unexploited potentials for improvements in road fuels which will provide major reductions in pollutant emissions both in vehicles already in the field and even more so in future dedicated vehicles.
Technical Paper

Development of an Improved Gravimetric Method for the Mass Measurement of Diesel Exhaust Gas Particles

2005-05-11
2005-01-2145
The Particulate Measurement Programme (PMP) works on the identification of a method to replace or complete the existing particle mass (PM) measurement method. The French PMP subgroup, composed by IFP, PSA Peugeot-Citroën, Renault and UTAC, proposes an improved gravimetric method for the measurement of emitted particles, and conducted an inter-laboratory test to evaluate its performances. The technical programme is based on tests carried out on a Euro3 Diesel passenger car (PC), tested on the New European Driving Cycle (NEDC). To achieve low particulate matter (PM) emissions, the EGR is disconnected and a paraffinic fuel is used. The regulated pollutants are also measured. It is shown that the multiple filter weighing and a 0.1 μg balance instead of a 1 μg one are not necessary, as the first weighing and the 1 μg balance performances are satisfactory for type-approval purposes.
Technical Paper

French Program on the Impact of Engine Technology on Particulate Emissions, Size Distribution and Composition Heavy Duty Diesel Study

2005-04-11
2005-01-0190
An extensive research program involving the French passenger car and heavy-duty (HD) vehicles manufacturers, sponsored by ADEME and realized by IFP, aimed to characterize in terms of size and composition the particulate emitted by the different engine technologies currently or soon available. The impact of engine settings and fuel composition was also studied. Numerous information was collected in this HD study revealing that fuel composition and particularly non-conventional fuels and engine settings strongly impact the particulate concentration and size distribution. Nucleation is likely to occur when there is less adsorption matter, for instance when post-injection is used or EGR is removed. Particulate composition, particularly PAH and sulfates content, is weakly bound to the size. Mineral elements distribution depends on their origin, lubrication oil or engine wear.
Technical Paper

Progress in Diesel HCCI Combustion Within the European SPACE LIGHT Project

2004-06-08
2004-01-1904
The purpose of the European « SPACE LIGHT » (Whole SPACE combustion for LIGHT duty diesel vehicles) 3-year project launched in 2001 is to research and develop an innovative Homogeneous internal mixture Charged Compression Ignition (HCCI) for passenger cars diesel engine where the combustion process can take place simultaneously in the whole SPACE of the combustion chamber while providing almost no NOx and particulates emissions. This paper presents the whole project with the main R&D tasks necessary to comply with the industrial and technical objectives of the project. The research approach adopted is briefly described. It is then followed by a detailed description of the most recent progress achieved during the tasks recently undertaken. The methodology adopted starts from the research study of the in-cylinder combustion specifications necessary to achieve HCCI combustion from experimental single cylinder engines testing in premixed charged conditions.
Technical Paper

Non-Thermal Plasma Assisted Catalytic NOx Remediation from a Lean Model Exhaust

2001-09-24
2001-01-3508
No efficient catalyst presently exists for deNOx in lean burn conditions. Furthermore, actual catalysts generally deactivate during reaction. A cylindrical DBD non-thermal plasma reactor was coupled with a stable three-function catalyst in order to verify the nature of the effect of the plasma on the catalytic process. A mixture of NO/O2/C3H6 in N2 was used as a lean model exhaust. The plasma was found to perform two of the three functions: NO oxidation to NO2 and propene activation through the partial oxidation of the hydrocarbon to aldehyde or alcohol. A complete catalyst containing the first two previous functions and the associative chemisorption of NO (third function) was used, as well as a simplified catalyst containing only the third function. Results suggest an advantageous plasma-catalyst coupling effect on NOx remediation in accordance with the proposed catalytic model.
Technical Paper

Influence of Both Catalyst Geometry and Fuel Sulfur Content on NOX Adsorber Poisoning

2001-05-07
2001-01-1934
NOx adsorbers are very sensitive to sulfur poisoning and future fuel standards are unlikely to be sufficient to prevent the system from requiring periodic desulfation procedures. The purpose of this paper is to present the effects of low fuel sulfur content such as 50 ppm and 10 ppm on the NOx adsorber efficiency for a diesel application. Through this study, the influence of the substrate cell geometry has also been assessed. The use of a 10 ppm sulfur fuel is not enough to maintain, at a high level, the NOx adsorber performance during a 40,000 km aging test. The desulfation criterion (efficiency loss of 30%) is reached after the first 16,000 km. However, the desulfation operation is not enough to recover the initial catalyst performance and the poisoning velocity increases as the catalyst ages. The hexagonal cell substrate catalyst is less sensitive to sulfur poisoning than a square cell substrate catalyst so that its desulfation frequency is much lower.
Technical Paper

NOx-Trap System Development and Characterization for Diesel Engines Emission Control

2000-10-16
2000-01-2910
Laboratory and vehicle tests were carried out to investigate behaviour and potentiality of NOx-trap catalytic system in Diesel conditions. Three main aspects were studied. The first one deals with the NOx storage capacity of adsorber under laboratory and vehicle conditions, especially regarding the influence of driving conditions. The second one focuses on the regenerability of different materials. At length, special attention is devoted to the sulphur poisoning rate. A representative laboratory test method was built up, to evaluate NOx storage capacity under Diesel conditions. It is shown that NOx adsorption occurs from 100 to 400°C. Low temperature activity (100 to 250°C) is conditioned by low NOx flow emission, mainly due to the use of high EGR rate. Higher temperatures lead to an increase in the intrinsic NOx Storage capacity of the material, but are also accompanied by high NOx concentration and space velocity.
Technical Paper

A Validated Numerical Simulation of Diesel Injector Flow Using a VOF Method

2000-10-16
2000-01-2932
Progress in Diesel spray modelling highly depends on a better knowledge of the instantaneous injection velocity and of the hydraulic section at the exit of each injection hole. Additionally a better identification of the mechanisms which cause fragmentation is needed. This necessitates to begin with a precise computation of the two-phase flow which arises due to the presence of cavitation within the injectors. For that aim, a VOF type interface tracking method has been developed and improved (Segment Lagrangian VOF method) which allows to describe numerically the onset and development of cavitation within Diesel injectors. Furthermore, experiments have been performed for validation purpose, on transparent one-hole injectors for high pressure injection conditions. Two different entrance geometries (straight and rounded) and various upstream and downstream pressure levels have been considered.
X