Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Exhaust Gas Aftertreatment of Volkswagen FSI Fuel Stratified Injection Engines

2002-03-04
2002-01-0346
For substantial reduction of fuel consumption of their vehicle fleet, Volkswagen AG has decided to develop spark-ignition engines with direct fuel injection. To launch this new engine concept with stratified lean operation mode while at the same time meeting the stringent EU IV emission standards, it was necessary to develop a suitable exhaust gas aftertreatment system. This was achieved as part of an intensive co-operation between Volkswagen AG and OMG, formerly dmc2 Degussa Metals Catalysts Cerdec AG. The paper describes the demands for exhaust gas aftertreatment due to lean burn operation. In addition the main development steps of the exhaust gas aftertreatment system for Volkswagen FSI engines and catalyst durability over vehicle lifetime are discussed. Focus is laid on the catalyst system design and coating variations. Volkswagen developed a new closed-loop emission control management system which uses NOx-sensor signals for the first time worldwide.
Technical Paper

Research Results and Progress in LeaNOx II -A Co-operation for Lean NOx Abatement

2000-10-16
2000-01-2909
In a consortium of European industrial partners and research institutes, a combination of industrial development and scientific research was organised. The objective was to improve the catalytic NOx conversion for lean burn cars and heavy-duty trucks, taking into account boundary conditions for the fuel consumption. The project lasted for three years. During this period parallel research was conducted in research areas ranging from basic research based on a theoretical approach to full scale emission system development. NOx storage catalysts became a central part of the project. Catalysts were evaluated with respect to resistance towards sulphur poisoning. It was concluded that very low sulphur fuel is a necessity for efficient use of NOx trap technology. Additionally, attempts were made to develop methods for reactivating poisoned catalysts. Methods for short distance mixing were developed for the addition of reducing agent.
Technical Paper

Effect of EGR on Spray Development, Combustion and Emissions in a 1.9L Direct-Injection Diesel Engine

1995-10-01
952356
The spray development, combustion and emissions in a 1.9L optical, four-cylinder, direct-injection diesel engine were investigated by means of pressure analysis, high-speed cinematography, the two-colour method and exhaust gas analysis for various levels of exhaust gas recirculation (EGR), three EGR temperatures (uncontrolled, hot and cold) and three fuels (diesel, n-heptane and a two-component fuel 7D3N). Engine operating conditions included 1000 rpm/idle and 2000 rpm/2bar with EGR-rates ranging from 0 to 70%. Independent of rate, EGR was found to have a very small effect on spray angle and spray tip penetration but the auto-ignition sites seemed to increase in size and number at higher EGR-rates with associated reduction in the flame luminosity and flame temperature, by, say, 100K at 50% EGR.
X