Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Measured Statistical Characteristics of Automotive Ignition Noise

1973-02-01
730133
Noise produced by automotive ignition systems can deteriorate the performance of nearby communication systems. An important step toward alleviating this difficulty is to characterize the ignition noise. Measurements have been made of the noise peak amplitude distribution of a number of identically equipped vehicles over a fixed period of time. Both vertical and horizontal polarizations were used, and measurements were made at two frequencies, 145 and 230 MHz. These statistics were then compared to various probability distributions to attempt to characterize the amplitude distribution of the noise. The distributions studied were: the log-normal, the exponential, the Rayleigh, and the Weibull distributions. It was concluded that the best fit was provided by the Weibull distribution. The parameters of the best fitting distribution are primarily a function of the antenna's polarization, with frequency having only a minor effect.
Technical Paper

Thoracic Tolerance to Whole-Body Deceleration

1971-02-01
710852
A professional high diver, instrumented with accelerometers, performed sixteen dives from heights between 27-57 ft. For each dive, he executed a 3/4 turn and landed supine on a 3-ft deep mattress which consisted of pieces of low-density urethane foam encased in a nylon cover. Using FM telemetry, sagittal plane decelerations were recorded for a point either on the sternum or the forehead. Impact velocities and corresponding stopping distances for the thorax and the head were calculated from high-speed movies of the dives. For a 57-ft dive, the impact velocity of the thorax was 41 mph with a corresponding stopping distance of 34.6 in. The peak resultant deceleration of the thorax was 49.2 g with a pulse duration of 100 ms. The maximum rate of change of the deceleration of the thorax was 5900 g/s. No discomfort was experienced as a result of this impact. The maximum forehead deceleration occurred during a 47.0-ft drop and exceeded 56 g with a Gadd Severity Index greater than 465.
X