Refine Your Search

Topic

Author

Search Results

Technical Paper

3DCFD-Modeling of a Hydrogen Combustion-Process with Regard to Simulation Stability and Emissions

2023-06-26
2023-01-1209
In the context of the energy transition, CO2-neutral solutions are of enormous importance for all sectors, but especially for the mobility sector. Hydrogen as an energy carrier has therefore been the focus of research and development for some time. However, the development of hydrogen combustion engines is in many respects still in the conception phase. Automotive system providers and engineering companies in the field of software development and simulation are showing great interest in the topic. In a joint project with the industrial partners Robert Bosch GmbH and AVL Germany, combustion in a H2-DI-engine for use in light-duty vehicles was methodically investigated using the CFD tool AVL FIRE®. The collaboration between Robert Bosch GmbH and the Institute for Mobile Systems (IMS) at Otto von Guericke University Magdeburg has produced a model study in which model approaches for the combustion of hydrogen can be analyzed.
Technical Paper

Generic Methodology for Vibration and Wear Analysis to Understand Their Influences in an Electric Drivetrain

2020-09-30
2020-01-1506
The prime factor which influences noise and vibrations of electro-mechanical drives is wear at the components. This paper discusses the numerical methods developed for abrasion, vibration calculations and the coupling between wear and Noise Vibration and Harshness (NVH) models of the drive unit. The vibration domain model, initially, focuses on the calculations of mechanical excitations at the gear shafts which are generated via a nonlinear dynamic model. Furthermore, the bearings are studied for the influences on their stiffness and eventually their impact on the harmonics of the drivetrain. Later, free and forced vibrations of the complete drivetrain are simulated via a steady-state dynamic model. Consequently, the paper concentrates on the abrasion calculations at the gears. Wear is a complex process and understanding it is essential for determining the vibro-acoustics characteristics.
Technical Paper

Large Eddy Simulations and Tracer-LIF Diagnostics of Wall Film Dynamics in an Optically Accessible GDI Research Engine

2019-09-09
2019-24-0131
Large Eddy Simulations (LES) and tracer-based Laser-Induced Fluorescence (LIF) measurements were performed to study the dynamics of fuel wall-films on the piston top of an optically accessible, four-valve pent-roof GDI research engine for a total of eight operating conditions. Starting from a reference point, the systematic variations include changes in engine speed (600; 1,200 and 2,000 RPM) and load (1000 and 500 mbar intake pressure); concerning the fuel path the Start Of Injection (SOI=360°, 390° and 420° CA after gas exchange TDC) as well as the injection pressure (10, 20 and 35 MPa) were varied. For each condition, 40 experimental images were acquired phase-locked at 10° CA intervals after SOI, showing the wall-film dynamics in terms of spatial extent, thickness and temperature.
Technical Paper

A Review of the Requirements for Injection Systems and the Effects of Fuel Quality on Particulate Emissions from GDI Engines

2018-09-10
2018-01-1710
Particulate emissions from Gasoline Direct Injection (GDI) engines have been an important topic of recent research interest due to their known environmental effects. This review paper will characterise the influence of different gasoline direct injection fuel systems on particle number (PN) emissions. The findings will be reviewed for engine and vehicle measurements with appropriate driving cycles (especially real driving cycles) to evaluate effects of the fuel injection systems on PN emissions. Recent technological developments alongside the trends of the influence of system pressure and nozzle design on injector tip wetting and deposits will be considered. Besides the engine and fuel system it is known that fuel composition will have an important effect on GDI engine PN emissions. The evaporation qualities of fuels have a substantial influence on mixture preparation, as does the composition of the fuel itself.
Technical Paper

Experimental Investigation of Flame-Wall-Impingement and Near-Wall Combustion on the Piston Temperature of a Diesel Engine Using Instantaneous Surface Temperature Measurements

2018-09-10
2018-01-1782
The heat transfer process in a reciprocating engine is dominated by forced convection, which is drastically affected by mean flow, turbulence, flame propagation and its impingement on the combustion chamber walls. All these effects contribute to a transient heat flux, resulting in a fast-changing temporal and spatial temperature distribution at the surface of the combustion chamber walls. To quantify these changes in combustion chamber surface temperature, surface temperature measurements on the piston of a single cylinder diesel engine were taken. Therefore, thirteen fast-response thermocouples were installed in the piston surface. A wireless microwave telemetry system was used for data transmission out of the moving piston. A wide range of parameter studies were performed to determine the varying influences on the surface temperature of the piston.
Technical Paper

Analysis of Non-Police Reported Accidents on Indian Highways

2017-01-10
2017-26-0005
The official Indian accident statistics show that the number of road accidents and fatalities are one of the highest worldwide. These official statistics provide important facts about the current accident situation. It is suspected that for various reasons not all accidents are reported to the official statistic. This study estimates the degree of underreporting of traffic accidents with casualties in India. In order to get a national overview of the traffic accident situation it is necessary to improve the knowledge about underreported accidents. Therefore, the in-depth accident database of “Road Accident Sampling System India” (RASSI) was analyzed [1]. This project is organized by a consortium that has collected traffic accidents scientifically in four different regions since 2011 on the spot which have been reported either by police or by local hospitals and own patrol by RASSI engineers.
Technical Paper

Flex Fuel Software Maintainability Improvement: A Case Study

2016-10-25
2016-36-0214
Many software functions currently available in the engine control units have been developed for several years (decades in some cases), reengineered or adapted due to new requirements, what may add to their inherent complexity an unnecessary complication. This paper deals with the study and implementation of a software reengineering strategy for the embedded domain, which is in transfer from research department to product development, here applied to improve maintainability of flex fuel functions. The strategy uses the SCODE “Essential Analysis”, an approach for the embedded system domain. The method allows to reduce the system complexity to the unavoidable inherent problem complexity, by decomposing the system into smaller sub problems based on its essential physics. A case study was carried out to redesign a function of fuel adaptation. The analysis was performed with the support of a tool, which covers all the phases of the method.
Technical Paper

Integration Strategy of Safety Systems - Status and Outlook

2016-04-05
2016-01-1499
On the way to automated driving, the installation rate of surround sensing systems will rapidly increase in the upcoming years. The respective technical progress in the areas of driver assistance and active safety leads to a numerous and valuable information and signals to be used prior to, during and even after an accident. Car makers and suppliers can make use of this new situation and develop integrated safety functions to further reduce the number of injured and even deaths in car accidents. Nevertheless, the base occupant safety remains the core of this integrated safety system in order to ensure at least a state-of-the-art protection even in vehicles including partial, high or full automation. Current networked safety systems comprehend a point-to-point connection between single components of active and safety systems. The optimal integration requires a much deeper and holistic approach.
Journal Article

Direct Coil Cooling of a High Performance Switched Reluctance Machine (SRM) for EV/HEV Applications

2015-04-14
2015-01-1209
This paper presents the development of a novel direct coil cooling approach which can enable high performance for electric traction motor, and in further significantly reduce motor losses. The proposed approach focuses on bypassing critical thermal resistances in motor by cooling coils directly in stator slots with oil flow. Firstly, the basic configuration and features are shown: sealed stator slots to air gap, pressure reservoirs on both side of the slots and slot channels for oil flow. The key to enhance thermal performance of the motor here is based on introducing fluid guiding structure in the slot channels. Next, heat transfer in the channel with guiding structure is investigated by CFD and compared with bare slot channel without guiding structure. For studying the effectiveness of proposed cooling concept, numerical analysis is conducted to compare it with HEV favored oil impingement cooling.
Technical Paper

Incorporating Thermo- and Aerodynamic Losses into Compressor Models for Real-Time Applications

2015-04-14
2015-01-1715
Compressor models play a major role as they define the boost pressure in the intake manifold. These models have to be suitable for real-time applications such as control and diagnosis and for that, they need to be both accurate and computationally inexpensive. However, the models available in the literature usually fulfill only one of these two competing requirements. On the one hand, physics-based models are often too complex to be evaluated on line. On the other hand, data-based models generally suffer insufficient extrapolation features. To combine the merits of these two types of models, this work presents an extended approach to compressor modeling with respect to thermo- and aerodynamic losses. In particular, the model developed by Martin et al. [1] is augmented to explicitly incorporate friction, incidence and heat transfer losses. The resulting model surpasses the extrapolation properties of data-based models and facilitates the generation of extended lookup tables.
Journal Article

Engine Start-Up Optimization using the Transient Burn Rate Analysis

2011-04-12
2011-01-0125
The introduction of CO₂-reduction technologies like Start-Stop or the Hybrid-Powertrain and the future emission legislation require a detailed optimization of the engine start-up. The combustion concept development as well as the calibration of the ECU makes an explicit thermodynamic analysis of the combustion process during the start-up necessary. Initially, the well-known thermodynamic analysis of in-cylinder pressure at stationary condition was transmitted to the highly non-stationary engine start-up. There, the current models for calculation of the transient wall heat fluxes were found to be misleading. Therefore, adaptations to the start-up conditions of the known models by Woschni, Hohenberg and Bargende were introduced for calculation of the wall heat transfer coefficient in SI engines with gasoline direct injection. This paper shows how the indicated values can be measured during the engine start-up.
Journal Article

Particulate Matter Sensor for On Board Diagnostics (OBD) of Diesel Particulate Filters (DPF)

2010-04-12
2010-01-0307
The emissions legislation in the US and Europe introduces the need for the application of diesel particulate filters (DPF) in most diesel vehicles. In order to fulfill future OBD legislations, which include more stringent requirements on monitoring the functionality of those particulate filters, new sensors besides the differential pressure sensor are necessary. The new sensors need to directly detect the soot emission after DPF and withstand the harsh exhaust gas environment. Based on multi layer ceramic sensor technology, an exhaust gas sensor for particulate matter (EGS-PM) has been developed. The soot-particle-sensing element consists of two inter-digitated comb-like electrodes with an initially infinite electrical resistance. During the sensor operation, soot particles from the exhaust gas are collected onto the inter-digital electrodes and form conductive paths between the two electrode fingers leading to a drop of the electrical resistance.
Journal Article

Novel Transient Wall Heat Transfer Approach for the Start-up of SI Engines with Gasoline Direct Injection

2010-04-12
2010-01-1270
The introduction of CO₂-reduction technologies like Start-Stop or the Hybrid-Powertrain and the future emissions limits require a detailed optimization of the engine start-up. The combustion concept development as well as the calibration of the ECU makes an explicit thermodynamic analysis of the combustion process during the start-up necessary. Initially, the well-known thermodynamic analysis of in-cylinder pressure at stationary condition was transmitted to the highly non-stationary engine start-up. There, the current models for calculation of the transient wall heat fluxes were found to be misleading. But with a fraction of nearly 45% of the burned fuel energy, the wall heat is very important for the calculation of energy balance and for the combustion process analysis.
Journal Article

Investigations on the Transient Wall Heat Transfer at Start-Up for SI Engines with Gasoline Direct Injection

2009-04-20
2009-01-0613
The introduction of CO2-reduction technologies like Start-Stop or the Hybrid-Powertrain and the future emissions regulations require a detailed optimization of the engine start-up. The combustion concept development as well as the calibration of the ECU makes it necessary to carry out an explicit thermodynamic analysis of the combustion process during the start-up. As of today, the well-known thermodynamic analysis using in-cylinder pressure traces at stationary condition is transmitted to the highly dynamic engine start-up. Due to this approximation the current models for calculation of the transient wall heat fluxes by Woschni, Hohenberg and Bargende do not lead to desired results. But with a fraction of approximately 40 % of the burnt fuel energy, the wall heat is very important for the calculation of energy balance and for the combustion process analysis during start-up.
Journal Article

Diesel Lubricity Requirements of Future Fuel Injection Equipment

2009-04-20
2009-01-0848
This paper looks at the underlying fundamentals of diesel fuel system lubrication for the highly-loaded contacts found in fuel injection equipment like high-pressure pumps. These types of contacts are already occurring in modern systems and their severity is likely to increase in future applications due to the requirement for increased fuel pressure. The aim of the work was to characterise the tribological behavior of these contacts when lubricated with diesel fuel and diesel fuel treated with lubricity additives and model nitrogen and sulphur compounds of different chemical composition. It is essential to understand the role of diesel fuel and of lubricity additives to ensure that future, more severely-loaded systems, will be free of any wear problem in the field.
Technical Paper

Thermodynamic Analysis and Benchmark of Various Gasoline Combustion Concepts

2006-04-03
2006-01-0231
Novel Combustion technologies and strategies show high potential in reducing the fuel consumption of gasoline spark ignition (SI) engines. In this paper, a comparison between various gasoline combustion concepts at two representative engine operating points is shown. Advantages of the combustion concepts are analyzed using thermodynamic split of losses method. In this paper, a tool for thermodynamic assessment (Split of Losses) of conventional and new operating strategies of SI engine and its derivatives is used. Technologies, like variable valve actuation and/or gasoline direct injection, allow new strategies to run the SI engine unthrottled with early inlet valve closing (SI-VVA) combined with high EGR, charge stratification (SI-STRAT) and controlled auto ignition (CAI), also known as gasoline homogeneous charge compression ignition (HCCI). These diverse combustion concepts show thermodynamic gains that stem from several, often different sources.
Technical Paper

Analysis of the Injection of Urea-Water-Solution for Automotive SCR DeNOx-Systems: Modeling of Two-Phase Flow and Spray/Wall-Interaction

2006-04-03
2006-01-0643
The selective catalytic reduction (SCR) based on urea-water-solution is an effective technique to reduce nitrogen oxides (NOx) emitted from diesel engines. A 3D numerical computer model of the injection of urea-water-solution and their interaction with the exhaust gas flow and exhaust tubing is developed to evaluate different configurations during the development process of such a DeNOx-system. The model accounts for all relevant processes appearing from the injection point to the entrance of the SCR-catalyst: momentum interaction between gas phase and droplets evaporation and thermolysis of droplets hydrolysis of isocyanic acid in gas phase heat transfer between wall and droplets spray/wall-interaction two-component wall film including interaction with gas phase and exhaust tube The single modeling steps are verified with visualizations, patternator measurements, phase-doppler-anemometer results and temperature measurements.
Technical Paper

Numerical and Experimental Analysis of the Momentum and Heat Transfer in Exhaust Gas Sensors

2005-04-11
2005-01-0037
Modern zirconia oxygen sensors are heated internally to achieve an optimal detection of the oxygen concentration in the exhaust gas and fast light off time. The temperature of the gas in the exhaust pipe varies in a wide range. The zirconia sensor is cooled by radiation and forced convection caused by cold exhaust gas. If the zirconia temperature falls, the oxygen detection capability of the sensor decreases. To minimize the cooling effects, protection tubes cover the zirconia sensor. However, this is in conflict with the aim to accelerate the dynamics of the lambda sensor. In this paper, the heat transfer at the surface of a heated planar zirconia sensor with two different double protection tubes of a Bosch oxygen sensor is examined in detail. The geometric configuration of the tubes forces different flow patterns in the inner protection tube around the zirconia sensor. The zirconia sensor is internally electrically heated by a platinum heater layer.
Technical Paper

Active Pedestrian Protection - System Development

2004-03-08
2004-01-1604
Pedestrian protection is an upcoming field for research and development. Active pedestrian protection is described from a system perspective. In this view, the development of an active pedestrian protection system is shown. First an overview on statistics and legal requirements is given and the system requirements are discussed. Sensor concepts and realizations are shown, also different test methods and results are explained. FE-simulations to complete and later replace additional tests are developed, after cross check with the experimental results. In combination with the shown actuator concept this leads to a full functioning active pedestrian protection system.
Technical Paper

Integration of Time Triggered CAN (TTCAN_TC)

2002-03-04
2002-01-0263
Time Triggered CAN (TTCAN) is an extension of the well-known CAN protocol, introducing to CAN networks time triggered communication and a system wide global network time with high precision. Time Triggered CAN has been accepted as international standard ISOCD11898-4. The time triggered communication is built upon the unchanged standard CAN protocol. This allows a software implementation of the time triggered function of TTCAN, based on existing CAN ICs. The high precision global time however requires a hardware implementation. A hardware implementation also offers additional functions like time mark interrupts, a stopwatch, and a synchronization to external events, all independent of software latency times. The TTCAN testchip (TTCAN_TC) is a standalone TTCAN controller and has been produced as a solution to the hen/egg problem of hardware availability versus tool support and research.
X