Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Rapid Catalyst Heating System for Gasoline-Fueled Engines

2024-04-09
2024-01-2378
Increasingly stringent tailpipe emissions regulations have prompted renewed interest in catalyst heating technology – where an integrated device supplies supplemental heat to accelerate catalyst ‘light-off’. Bosch and Boysen, following a collaborative multi-year effort, have developed a Rapid Catalyst Heating System (RCH) for gasoline-fueled applications. The RCH system provides upwards of 25 kW of thermal power, greatly enhancing catalyst performance and robustness. Additional benefits include reduction of precious metal loading (versus a ‘PGM-only’ approach) and avoidance of near-engine catalyst placement (limiting the need for enrichment strategies). The following paper provides a technical overview of the Bosch/Boysen (BOB) Rapid Catalyst Heating system – including a detailed review of the system’s architecture, key performance characteristics, and the associated impact on vehicle-level emissions.
Technical Paper

Demonstration of Low Criteria Pollutant and Greenhouse Gas Emissions: Synergizing Vehicle Emission Reduction Technology and Lower Carbon Fuels

2024-04-09
2024-01-2121
This study focuses on evaluation of various fuels within a conventional gasoline internal combustion engine (ICE) vehicle and the implementation of advanced emissions reduction technology. It shows the robustness of the implemented technology packages for achieving ultra-low tailpipe emissions to different market fuels and demonstrates the potential of future GHG neutral powertrains enabled by drop-in lower carbon fuels (LCF). An ultra-low emission (ULE) sedan vehicle was set up using state-of-the-art engine technology, with advanced vehicle control and exhaust gas aftertreatment system including a prototype rapid catalyst heating (RCH) unit. Currently regulated criteria pollutant emission species were measured at both engine-out and tailpipe locations. Vehicle was run on three different drive cycles at the chassis dynamometer: two standard cycles (WLTC and TfL) at 20°C, and a real driving emission (RDE) cycle at -7°C.
Technical Paper

Generic X-Domain Hazard Analysis and Risk Assessment

2023-04-11
2023-01-0580
X-Domain describes the merging of different domains (i.e., braking, steering, propulsion, suspension) into single functionalities. One example in this context is torque-vectoring. Different goals can be pursued by applying X-Domain features. On the one hand, savings in fuel consumption and an improved vehicle driving performance can be potentially accomplished. On the other hand, safety can be improved by taking over a failed or degraded functionality of one domain by other domains. The safety-aspect from the viewpoint of requirements is highlighted within this contribution. Every automotive system being developed and influencing the vehicle safety must fulfill certain safety objectives. These are top-level safety requirements (ISO 26262-1) specifying functionalities to avoid unreasonable risk. Every safety objective is associated with an Automotive Safety Integrity Level (ASIL) derived from a Hazard Analysis and Risk Assessment (HARA).
Technical Paper

GPS Coordinates Based Route Recognition and Predictive Functions

2022-10-05
2022-28-0124
Historically, whenever the automotive solutions’ state of art reaches a saturation level, the integration of new verticals of technology has always raised new opportunities to innovate, enhance and optimize automotive solutions. The predictive powertrain solutions using connectivity elements (e.g., navigation unit, e-Horizon or cloud-based services) are one of such areas of huge interest in automotive industry. The prior knowledge of trip destination and its route characteristics has potential to make prediction of powertrain modes or events in certain order and therefore it can add value in various application areas such as optimized energy management, lower fuel consumption, superior safety and comfort, etc.
Technical Paper

Virtual Investigation of Real Fuels by Means of 3D-CFD Engine Simulations

2019-09-09
2019-24-0090
The reduction of both harmful emissions (CO, HC, NOx, etc.) and gases responsible for greenhouse effects (especially CO2) are mandatory aspects to be considered in the development process of any kind of propulsion concept. Focusing on ICEs, the main development topics are today not only the reduction of harmful emissions, increase of thermodynamic efficiency, etc. but also the decarbonization of fuels which offers the highest potential for the reduction of CO2 emissions. Accordingly, the development of future ICEs will be closely linked to the development of CO2 neutral fuels (e.g. biofuels and e-fuels) as they will be part of a common development process. This implies an increase in development complexity, which needs the support of engine simulations. In this work, the virtual modeling of real fuel behavior is addressed to improve current simulation capabilities in studying how a specific composition can affect the engine performance.
Technical Paper

Experimental and Numerical Analysis of Pre-Chamber Combustion Systems for Lean Burn Gas Engines

2019-04-02
2019-01-0260
The current trend in automobiles is towards electrical vehicles, but for the most part these vehicles still require an internal combustion engine to provide additional range and flexibility. These engines are under stringent emissions regulations, in particular, for the reduction of CO2. Gas engines which run lean burn combustion systems provide a viable route to these emission reductions, however designing these engines to provide sustainable and controlled combustion under lean conditions at λ=2.0 is challenging. To address this challenge, it is possible to use a scavenged Pre-Chamber Ignition (PCI) system which can deliver favorable conditions for ignition close to the spark plug. The lean charge in the main combustion chamber is then ignited by flame jets emanating from the pre-chamber nozzles. Accurate prediction of flame kernel development and propagation is essential for the analysis of PCI systems.
Technical Paper

Investigation of an Innovative Combustion Process for High-Performance Engines and Its Impact on Emissions

2019-01-15
2019-01-0039
Over the past years, the question as to what may be the powertrain of the future has become ever more apparent. Aiming to improve upon a given technology, the internal combustion engine still offers a number of development paths in order to maintain its position in public and private mobility. In this study, an innovative combustion process is investigated with the goal to further approximate the ideal Otto cycle. Thus far, similar approaches such as Homogeneous Charge Compression Ignition (HCCI) shared the same objective yet were unable to be operated under high load conditions. Highly increased control efforts and excessive mechanical stress on the components are but a few examples of the drawbacks associated with HCCI. The approach employed in this work is the so-called Spark Assisted Compression Ignition (SACI) in combination with a pre-chamber spark plug, enabling short combustion durations even at high dilution levels.
Technical Paper

Optimal Automated Calibration of Model-Based ECU-Functions in Air System of Diesel Engines

2018-05-05
2018-01-5003
The success of model-based ECU-functions relies on precise and efficient modeling of the behavior of combustion engines. Due to the limited computing power, usually a combination of physical models and calibration parameters is preferred for engine modeling in ECU. The parameters can be scalars, 1 or 2-dimensional empirical models, such as look-up table for volumetric efficiency and effective area of the exhaust gas recirculation (EGR). A novel algorithm is proposed to automatically calibrate the look-up tables characterizing stationary functional relationships in ECU-function of the air system of a diesel engine with minimum calibration cost. The algorithm runs in the framework of online design of experiment (DoE), in which Gaussian process model (GPM) is adopted to approximate the relationships of interest.
Journal Article

Predictive Multi-Objective Operation Strategy Considering Battery Cycle Aging for Hybrid Electric Vehicles

2018-04-03
2018-01-1011
Due to the new CO2 targets for vehicles, electrification of powertrains and operation strategies for electrified powertrains have drawn more attention. This article presents a predictive multi-objective operation strategy for hybrid electric vehicles (HEVs), which simultaneously minimizes the fuel consumption and the cycle aging of traction batteries. This proposed strategy shows better performance by using predictive information and high robustness to inaccuracy of predictive information. In this work, the benefits of the developed operation strategies are demonstrated in a strong hybrid electric vehicle (sHEV) with P2-configuration. For the cycle aging of a lithium-ion battery, an empirical model is built up with Gaussian processes based on experimental data.
Technical Paper

Development of Wireless Message for Vehicle-to-Infrastructure Safety Applications

2018-04-03
2018-01-0027
This paper summarizes the development of a wireless message from infrastructure-to-vehicle (I2V) for safety applications based on Dedicated Short-Range Communications (DSRC) under a cooperative agreement between the Crash Avoidance Metrics Partners LLC (CAMP) and the Federal Highway Administration (FHWA). During the development of the Curve Speed Warning (CSW) and Reduced Speed Zone Warning with Lane Closure (RSZW/LC) safety applications [1], the Basic Information Message (BIM) was developed to wirelessly transmit infrastructure-centric information. The Traveler Information Message (TIM) structure, as described in the SAE J2735, provides a mechanism for the infrastructure to issue and display in-vehicle signage of various types of advisory and road sign information. This approach, though effective in communicating traffic advisories, is limited by the type of information that can be broadcast from infrastructures.
Technical Paper

Validating Prototype Connected Vehicle-to-Infrastructure Safety Applications in Real- World Settings

2018-04-03
2018-01-0025
This paper summarizes the validation of prototype vehicle-to-infrastructure (V2I) safety applications based on Dedicated Short Range Communications (DSRC) in the United States under a cooperative agreement between the Crash Avoidance Metrics Partners LLC (CAMP) and the Federal Highway Administration (FHWA). After consideration of a number of V2I safety applications, Red Light Violation Warning (RLVW), Curve Speed Warning (CSW) and Reduced Speed Zone Warning with Lane Closure Warning (RSZW/LC) were developed, validated and demonstrated using seven different vehicles (six passenger vehicles and one Class 8 truck) leveraging DSRC-based messages from a Road Side Unit (RSU). The developed V2I safety applications were validated for more than 20 distinct scenarios and over 100 test runs using both light- and heavy-duty vehicles over a period of seven months. Subsequently, additional on-road testing of CSW on public roads and RSZW/LC in live work zones were conducted in Southeast Michigan.
Technical Paper

Worldwide Electrical Energy Consumption of Various HVAC Systems in BEVs and Their Thermal Management and Assessment

2018-04-03
2018-01-1190
Battery electric vehicles (BEVs) are equipped with Mobile Air Conditioning systems (MACs) to ensure a comfortable cabin temperature in all climates and ambient conditions as well as the optional conditioning of the traction battery. An assessment of the global electrical energy consumption of various MACs has been derived, where the basis of the assessment procedure is the climate data GREEN-MAC-LCCP 2007 (Global Refrigerants Energy & Environmental - Mobile Air Condition - Life Cycle Climate Performance) and the improved LCCP2013 (Life Cycle Climate Performance. The percentage driving time during 6 AM and 24 PM is divided into six different temperature bins with the solar radiation and relative humidity for 211 cities distributed over Europe, North, Central, and South America, Asia, South West Pacific, and Africa. The energy consumption of the MACs is determined by a thermal vehicle simulation. In this work, four different MACs are simulated and compared.
Technical Paper

Comparison of Shadowgraph Imaging, Laser-Doppler Anemometry and X-Ray Imaging for the Analysis of Near Nozzle Velocities of GDI Fuel Injectors

2017-10-08
2017-01-2302
The fuel spray behavior in the near nozzle region of a gasoline injector is challenging to predict due to existing pressure gradients and turbulences of the internal flow and in-nozzle cavitation. Therefore, statistical parameters for spray characterization through experiments must be considered. The characterization of spray velocity fields in the near-nozzle region is of particular importance as the velocity information is crucial in understanding the hydrodynamic processes which take place further downstream during fuel atomization and mixture formation. This knowledge is needed in order to optimize injector nozzles for future requirements. In this study, the results of three experimental approaches for determination of spray velocity in the near-nozzle region are presented. Two different injector nozzle types were measured through high-speed shadowgraph imaging, Laser Doppler Anemometry (LDA) and X-ray imaging.
Technical Paper

Comparison of a State of the Art Hydraulic Brake System with a Decentralized Hydraulic Brake System Concept for Electric Vehicles

2017-09-17
2017-01-2515
The ongoing changes in the development of new power trains and the requirements due to driver assistance systems and autonomous driving could be the enabler for completely new brake system configurations. The shift in the brake load collective has to be included in the systems requirements for electric vehicles. Many alternative concepts for hydraulic brake systems, even for decentralized configurations, can be found in the literature. For a decentralized system with all state of the art safety functionalities included, four actuators are necessary. Therefore, the single brake module should be as cost-effective as possible. Previous papers introduced systems which are for example based on plunger-like concepts, which are very expensive and heavy due to the needed gearing and design. In this paper a comparison between a state of the art hydraulic brake system using an electromechanical brake booster, and a completely new decentralized hydraulic brake concept is presented.
Journal Article

The Thermodynamics of Exhaust Gas Condensation

2017-06-29
2017-01-9281
Water vapor is, aside from carbon dioxide, the major fossil fuel combustion by-product. Depending on its concentration in the exhaust gas mixture as well as on the exhaust gas pressure, its condensation temperature can be derived. For typical gasoline engine stoichiometric operating conditions, the water vapor dew point lies at about 53 °C. The exhaust gas mixture does however contain some pollutants coming from the fuel, engine oil, and charge air, which can react with the water vapor and affect the condensation process. For instance, sulfur trioxide present in the exhaust, reacts with water vapor forming sulfuric acid. This acid builds a binary system with water vapor, which presents a dew point often above 100 °C. Exhaust composition after leaving the combustion chamber strongly depends on fuel type, engine concept and operation point. Furthermore, the exhaust undergoes several chemical after treatments.
Technical Paper

Evaluating Different Measures to Improve the Numerical Simulation of the Mixture Formation in a Spark-Ignition CNG-DI-Engine

2017-03-28
2017-01-0567
Compressed Natural Gas (CNG) is a promising alternative fuel for internal combustion engines as its combustion is fuel-efficient and lean in carbon dioxide compared to gasoline. The high octane number of methane gives rise to significant increase of the thermodynamic efficiency due to higher possible compression ratios. In order to use this potential, new stratified mixture formation concepts for CNG are investigated by means of numerical fluid simulations. For decades RANS methods have been the industry standard to model three-dimensional flows. Indeed, there are well-known deficiencies of the widely used eddy viscosity turbulence models based on the applied Boussinesq hypothesis. Reynolds stress turbulence models as well as scale resolving simulation approaches can be appealing alternative choices since they offer higher accuracy. However, due to their large computing effort, they are still mostly impractical for the daily use in industrial product development processes.
Technical Paper

The Impact of a Combustion Chamber Optimization on the Mixture Formation and Combustion in a CNG-DI Engine in Stratified Operation

2017-03-28
2017-01-0779
A previous study by the authors has shown an efficiency benefit of up to Δηi = 10 % for stratified operation of a high pressure natural gas direct injection (DI) spark ignition (SI) engine compared to the homogeneous stoichiometric operation with port fuel injection (PFI). While best efficiencies appeared at extremely lean operation at λ = 3.2, minimum HC emissions were found at λ = 2. The increasing HC emissions and narrow ignition time frames in the extremely lean stratified operation have given the need for a detailed analysis. To further investigate the mixture formation and flame propagation und these conditions, an optically accessible single-cylinder engine was used. The mixture formation and the flame luminosity have been investigated in two perpendicular planes inside the combustion chamber.
Journal Article

Investigation on the Transient Behavior of a High Compression Two-Wheeler Single Cylinder Engine Close to Idling

2017-01-10
2017-26-0330
The introduction of stricter emission legislation and the demand of increased power for small two-wheelers lead to an increase of technical requirements. Especially the introduction of liquid-cooling over air-cooling allows the introduction of higher compression ratios, which improves power output as well as thermodynamic efficiencies and thereby fuel consumption. But an increase in compression ratio also introduces further challenges during transient behavior especially close to idling. In order to keep the two-wheeler specific responsiveness of the vehicle, the overall rotational inertia of the engine must be kept low. But the combination of low inertia and high compression ratio can lead to a stalling of the engine if the throttle is opened and closed very quickly in idle operation. The fast opening and closing of the throttle is called a throttle blip.
Journal Article

Alternative Engine Speed Sensing Using the Electric Signals of the Alternator

2016-11-08
2016-32-0088
In the low-cost segment for 2-Wheelers legislative, economic and ecologic considerations necessitate a reduction of the emissions and further improvement in fuel consumption. To reach these targets, the commonly used carburetors are being replaced by engine management systems (EMS). One option to provide these systems for acceptable and attractive system costs is to save a sensor device and to substitute its measure by an estimation value. In many motorcycles the rotor of the vehicle's alternator is rigidly attached to the crankshaft. Therefore, the voltage and current signals of the alternator contain information about the engine's speed, which can be retrieved by evaluating these electric signals. After further processing of this information inside the electronic control unit (ECU), the absolute crankshaft position can be obtained. A high-resolution speed signal without mechanical distortions like tooth errors is gained, whose signal quality equals the one of a common speed sensor.
Journal Article

Objective Evaluation of Steering Rack Force Behaviour and Identification of Feedback Information

2016-09-02
2016-01-9112
Electric power steering systems (EPS) are characterized by high inertia and therefore by a considerably damped transmission behaviour. While this is desirable for comfort-oriented designs, EPS do not provide enough feedback of the driving conditions, especially for drivers with a sporty driving style. The systematic actuation of the electric motor of an EPS makes it possible to specifically increment the intensity of the response. In this context, the road-sided induced forces of the tie rod and the steering rack force provide all the information for the steering system’s response. Former concepts differentiate between use and disturbance information by defining frequency ranges. Since these ranges overlap strongly, this differentiation does not segment distinctively. The presented article describes a method to identify useful information in the feedback path of the steering system depending on the driving situation.
X