Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

High Pressure Hydrogen Injector Sizing Using 1D/3D CFD Modeling for a Compression Ignition Single Cylinder Research Engine

2024-04-09
2024-01-2615
With the aim of decarbonizing the vehicles fleet, the use of hydrogen is promising solution. Hydrogen is an energy carrier, carbon-free, with high calorific value and with no CO2 and HC emissions burning in ICE. Hydrogen use in spark ignition engines has already been extensively investigated and optimized. On the other hand, its use in compression ignition engines has been little developed and, therefore, there is a lack of information regarding the combustion in ultra-lean conditions, typical of diesel engines. Several applications employ dual fuel combustion for the easy management of the PFI injection system to be applied in addition to the DI Common Rail system. However, this mode suffers from several problems regarding the management of the maximum flow rate of hydrogen into the intake. In particular, to avoid throwing hydrogen into the exhaust, injection must be started after the valve crossing.
Technical Paper

High-Pressure Hydrogen Jet Behavior: Flow Rate and Inner Morphology Investigation

2024-04-09
2024-01-2617
The combustion of fossil-based fuels in ICEs, resulting in a huge amount of greenhouse gases (GHG) and leading to an immense global temperature rise, are the root causes of the more stringent emission legislations to safeguard health and that encourage further investigations on alternative carbon-neutral fuels. In this respect, the hydrogen has been considered as one of the potential clean fuels because of its zero-carbon nature. The current development of hydrogen-based ICEs focuses on the direct injection (DI) strategy as it allows better engine efficiency than the port fuel injection one. The behavior of the fuel jet is a fundamental aspect of the in-cylinder air-fuel mixing ratio, affecting the combustion process, the engine performances, and the pollutants emissions. In the present study, comprehensive investigations on the hydrogen jet behavior, generated by a Compressed Hydrogen Gas (CHG) injector under different operative conditions, were performed.
Technical Paper

Investigation of Liquid Lignin-Methanol Blends under Realistic Two-Stroke Marine Engines Conditions

2023-08-28
2023-24-0085
With a view to reducing the environmental impact of fossil fuels, advanced lignin-based biofuels could provide a valuable contribute, since lignin is the most abundant biopolymer on earth after cellulose. However, its thermophysical properties would hamper its use as a pure fuel. In this work we investigated the combustion behavior of sprays of a liquid lignin-methanol blend and evaluated its potential as a low-carbon marine fuel for large two-stroke engines. To this end, an experimental campaign was conducted in an optically accessible combustion chamber whose main dimensions correspond to those of a single cylinder for large two-stroke engines. The chamber is provided with optical accesses for optical diagnostics of the combustion process. The combustion of the mixture was ignited using a diesel pilot jet as the ignition source. Two marine injectors are mounted in the chamber, namely “main” and “pilot” injectors.
Technical Paper

A Comparison of Methanol, Methane and Hydrogen Fuels for SI Engines: Performance and Pollutant Emissions

2023-08-28
2023-24-0037
The urban mobility electrification has been proposed as the main solution to the vehicle emission issues in the next years. However, internal combustion engines have still great potential to decarbonize the transport sector through the use of low/zero-carbon fuels. Alcohols such us methanol, have long been considered attractive alternative fuels for spark ignition engines. They have properties similar to those of gasoline, are easy to transport and store. Recently, great attention has been devoted to gaseous fuels that can be used in existing engine after minor modification allowing to drastically reduce the pollutant emissions. In this regard, this study tries to provide an overview on the use of alternative fuels, both liquid and gaseous in spark ignition engines, highlighting the benefits as well as the criticalities. The investigation was carried out on a small displacement spark ignition engine capable to operate both in port fuel and direct injection mode.
Journal Article

Effects of Ultra-High Injection Pressure and Flash Boiling Onset on GDI Sprays Morphology

2023-04-11
2023-01-0299
Ultra-high injection pressures, as well as flash-boiling occurrence, are among the most important research fields recently explored for improving Gasoline Direct Injection (GDI) engine performance. Both of them play a key role in the enhancement of the air/fuel mixing process, in the reduction of tailpipe pollutant emissions, as well as in the investigation of new combustion concepts. Injector manufacturers are even more producing devices with ultra-high injection pressures capable of working with flashing sprays. Flash-boiling of fuel sprays occurs when a super-heated fuel is discharged into an environment whose pressure is lower than the saturation pressure of the fuel and can dramatically alter spray formation due to complex two-phase flow effects and rapid droplet vaporization. In GDI engines, typically, it occurs during the injection process when high fuel temperatures make its saturation pressures higher than the in-cylinder one.
Technical Paper

Under-Expanded Jets Characterization by Means of CFD Numerical Simulation Using an Open FOAM Density-Based Solver

2021-09-05
2021-24-0057
Among the others, natural gas (NG) is regarded as a potential solution to enhance the environmental performance of internal combustion engines. Low carbon-to-hydrogen ratio, worldwide relatively homogeneous distribution and reduced price are the reason as, lately, many researchers efforts have been put in this area. In particular, this work focuses on the characterization of the injection process inside a constant volume chamber (CVC), which could provide a contribution to the development of direct injection technologies for a gaseous fuel. Direct injection of a gaseous fuel involves the presence of under-expanded jets whose knowledge is fundamental to achieve the proper mixture formation prior to the combustion ignition. For this reason, a density based solver was developed within the OpenFOAM library in order to simulate the jet issued from an injector suitable for direct injection of methane.
X