Refine Your Search

Topic

Author

Search Results

Technical Paper

Analysis of Dual Fuel Hydrogen/Diesel Combustion Varying Diesel and Hydrogen Injection Parameters in a Single Cylinder Research Engine

2024-04-09
2024-01-2363
In the perspective of a reduction of emissions and a rapid decarbonisation, especially for compression ignition engines, hydrogen plays a decisive role. The dual fuel technology is perfectly suited to the use of hydrogen, a fuel characterized by great energy potential. In fact, replacing, at the same energy content, the fossil fuel with a totally carbon free one, a significant reduction of the greenhouse gases, like carbon dioxide and total hydrocarbon, as well as of the particulate matter can be obtained. The dual fuel with indirect injection of gaseous fuel in the intake manifold, involves the problem of hydrogen autoignition. In order to avoid this difficulty, the optimal conditions for the injection of the incoming mixture into the cylinder were experimentally investigated. All combustion processes are carried out on a research engine with optical access. The engine speed has is set at 1500 rpm, while the EGR valve is deactivated.
Technical Paper

Development of an Automatic Pipeline for Data Analysis and Pre-Processing for Data Driven-Based Engine Emission Modeling in a Real Industrial Application

2024-04-09
2024-01-2018
During the development of an Internal Combustion Engine-based powertrain, traditional procedures for control strategies calibration and validation produce huge amount of data, that can be used to develop innovative data-driven applications, such as emission virtual sensing. One of the main criticalities is related to the data quality, that cannot be easily assessed for such a big amount of data. This work focuses on an emission modeling activity, using an enhanced Light Gradient Boosting Regressor and a dedicated data pre-processing pipeline to improve data quality. First thing, a software tool is developed to access a database containing data coming from emissions tests. The tool performs a data cleaning procedure to exclude corrupted data or invalid parts of the test. Moreover, it automatically tunes model hyperparameters, it chooses the best set of features, and it validates the procedure by comparing the estimation and the experimental measurement.
Technical Paper

High Pressure Hydrogen Injector Sizing Using 1D/3D CFD Modeling for a Compression Ignition Single Cylinder Research Engine

2024-04-09
2024-01-2615
With the aim of decarbonizing the vehicles fleet, the use of hydrogen is promising solution. Hydrogen is an energy carrier, carbon-free, with high calorific value and with no CO2 and HC emissions burning in ICE. Hydrogen use in spark ignition engines has already been extensively investigated and optimized. On the other hand, its use in compression ignition engines has been little developed and, therefore, there is a lack of information regarding the combustion in ultra-lean conditions, typical of diesel engines. Several applications employ dual fuel combustion for the easy management of the PFI injection system to be applied in addition to the DI Common Rail system. However, this mode suffers from several problems regarding the management of the maximum flow rate of hydrogen into the intake. In particular, to avoid throwing hydrogen into the exhaust, injection must be started after the valve crossing.
Technical Paper

MEMS Application to Monitor the In-Cylinder Pressure of a Marine Engine

2023-08-28
2023-24-0023
The transport of goods and people by sea, today, must meet the need to reduce the consumption of fuel oil. In addition, it has to ensure operational reliability and vessel availability, to reduce maintenance costs and comply with emission legislation. To this end, it is necessary to apply a marine engine combustion control system already widely used in engines for land transport. This will allow the ship's engines to operate reliably and in compliance with the best performance for which it was designed. The combustion control could also ensure a more balanced operation of the cylinders and reduce the torsional vibrations of the entire engine, as well as the management of the engine according to the adopted fuel: diesel, dual fuel, methanol, ammonia. Generally, the control of combustion in engines is carried out through the use of pressure sensors that face directly into the combustion chamber.
Technical Paper

Experimental-Numerical Analysis of Gasoline Spray-Wall Impingement at Ultra-High Injection Pressure for GCI Application

2023-08-28
2023-24-0082
Nowadays, in the perspective of a full electric automotive scenario, internal combustion engines can still play a central role in the fulfilment of different needs if the efficiency will be improved, and the tailpipe emission will be further limited. Gasoline Compression Ignition engines can offer a favourable balance between NOx, particulate, operating range. Stable operations are ensured by ultra-high gasoline injection pressure and tailored injection patterns in order to design the most proper local fuel distribution. In this context, engine simulations by means of CFD codes can provide insights on the design of the injection parameters, and emphasis must be placed on the capture of spray-wall impingement behaviour under those non-conventional conditions. This paper aims to analyse the spray-wall impingement behaviour of ultra-high gasoline spray using a combined experimental-CFD approach.
Technical Paper

CFD Analysis of the Injection Strategy of a Dual Fuel Compression Ignition Engine Supplied with Hydrogen

2023-08-28
2023-24-0064
Although in the latest years the use of compression ignition engines has been a thread of discussion in the automotive field, it is possible to affirm that it still will be a fundamental producer of mechanical power in other sectors, such as naval and off-road applications. However, the necessity of reducing emissions requires to keep on studying new solutions for this kind of engine. Dual fuel combustion concept with methane has demonstrated to be effective in preserving the performance of the original engine and reducing soot, but issues related to the low flame speed forced researcher to find an alternative fuel at low impact of CO2. Hydrogen, thanks to its chemical and physical properties, can be a perfect candidate to ensure a good level of combustion efficiency; however, this is possible only with a proper management of the in-cylinder mixture ignition by means of a pilot injection, preventing uncontrolled autoignition events as well.
Technical Paper

Optical Diagnostics to Study Hydrogen/Diesel Combustion with EGR in a Single Cylinder Research Engine

2023-08-28
2023-24-0070
In order to reduce fuel consumption and polluting emissions from engines, alternative fuels such as hydrogen could play an important role towards carbon neutrality. Moreover, dual-fuel (DF) technology has the potential to offer significant improvements in carbon dioxide emissions for transportation and energy sectors. The dual fuel concept (natural gas/diesel or hydrogen/diesel) represents a possible solution to reduce emissions from diesel engines by using low-carbon or carbon-free gaseous fuels as an alternative fuel. Moreover, DF combustion is a possible retrofit solution to current diesel engines by installing a PFI injector in the intake manifold while diesel is injected directly into the cylinder to ignite the premixed mixture. In the present study, dual fuel operation has been investigated in a single cylinder research engine.
Journal Article

Hydrogen/Diesel Combustion Analysis in a Single Cylinder Research Engine

2022-09-16
2022-24-0012
The application of an alternative fuel such as hydrogen to internal combustion engines is proving to be an effective and flexible solution for reducing fuel consumption and polluting emissions from engines. An easy to use and immediate application solution is the dual fuel (DF) technology. It has the potential to offer significant improvements in carbon dioxide emissions from light compression ignition engines. The dual fuel concept (natural gas / diesel or hydrogen / diesel) represents a possible solution to reduce emissions from diesel engines by using low-carbon or carbon-free gaseous fuels as an alternative fuel. Moreover, DF combustion is a possible retrofit solution to current diesel engines by installing a PFI injector in the intake manifold while diesel is injected directly into the cylinder to ignite the premixed mixture. In the present study, dual fuel operation has been investigated in a single cylinder research engine.
Technical Paper

CFD Analysis of Different Methane/Hydrogen Blends in a CI Engine Operating in Dual Fuel Mode

2022-08-30
2022-01-1056
Nowadays, the stricter regulations in terms of emissions have limited the use of diesel engines on urban roads. On the contrary, for marine and off-road applications the diesel engine still represents the most feasible solution for work production. In the last decades, dual fuel operation with methane supply has been widely investigated. Starting from previous studies on a research engine, where diesel-methane dual fuel combustion has been deepened both experimentally and numerically with the aid of a CFD code, the authors implemented and tested a kinetic mechanism. It is obtained from the combination of the well-established GRIMECH 3.0 and a detailed scheme for a diesel surrogate oxidation. Moreover, the Autoignition-Induced Flame Propagation model, included in the ANSYS Forte® software, is applied because it can be considered the most appropriate model to describe dual fuel combustion.
Technical Paper

Effects of Thermodynamic Conditions and Nozzle Geometry in Gaseous Fuels Direct Injection Process for Advanced Propulsion Systems

2022-03-29
2022-01-0505
Direct injection of gaseous fuels usually involves the presence of under-expanded jets. Understanding the physics of such process is imperative for developing Direct Injection (DI) internal combustion engines fueled, for example, by methane or hydrogen. An experimental-numerical characterization of the under-expanded jets issued from an innovative multi-hole injector, designed for application in heavy-duty engines, is carried out. The experimental characterization of the jet evolution was recorded by means of schlieren imaging technique and, then, a numerical simulation procedure was validated, allowing a comprehensive injection process analysis. A high-order and density-based solver, capable of reproducing the most relevant features of the under-expanded jets, was developed within OpenFOAM framework. Initially the effects of the upstream-to-downstream pressure ratio, namely Net Pressure Ratios (NPR), on the spray morphology were investigated.
Technical Paper

Under-Expanded Jets Characterization by Means of CFD Numerical Simulation Using an Open FOAM Density-Based Solver

2021-09-05
2021-24-0057
Among the others, natural gas (NG) is regarded as a potential solution to enhance the environmental performance of internal combustion engines. Low carbon-to-hydrogen ratio, worldwide relatively homogeneous distribution and reduced price are the reason as, lately, many researchers efforts have been put in this area. In particular, this work focuses on the characterization of the injection process inside a constant volume chamber (CVC), which could provide a contribution to the development of direct injection technologies for a gaseous fuel. Direct injection of a gaseous fuel involves the presence of under-expanded jets whose knowledge is fundamental to achieve the proper mixture formation prior to the combustion ignition. For this reason, a density based solver was developed within the OpenFOAM library in order to simulate the jet issued from an injector suitable for direct injection of methane.
Technical Paper

Modeling Study of the Battery Pack for the Electric Conversion of a Commercial Vehicle

2021-09-05
2021-24-0112
Many aspects of battery electric vehicles are very challenging from the engineering point of view in terms of safety, weight, range, and drivability. Commercial vehicle engines are often subjected to high loads even at low speeds and this can lead to an intense increment of the battery pack temperature and stress of the cooling system. For these reasons the optimal design of the battery pack and the relative cooling system is essential. The present study deals with the challenge of designing a battery pack that satisfies both the conditions of lowest weight and efficient temperature control. The trade-off between the battery pack size and the electrical stress on the cells is considered. The electric system has the aim to substitute a 3.0 liters compression ignition engine mainly for commercial vehicles.
Technical Paper

Development and Validation of a Virtual Sensor for Estimating the Maximum in-Cylinder Pressure of SI and GCI Engines

2021-09-05
2021-24-0026
This work focuses on the development and validation of a data-driven model capable of predicting the maximum in-cylinder pressure during the operation of an internal combustion engine, with the least possible computational effort. The model is based on two parameters, one that represents engine load and another one the combustion phase. Experimental data from four different gasoline engines, two turbocharged Gasoline Direct Injection Spark Ignition, a Naturally Aspirated SI and a Gasoline Compression Ignition engine, was used to calibrate and validate the model. Some of these engines were equipped with technologies such as Low-Pressure Exhaust Gas Recirculation and Water Injection or a compression ignition type of combustion in the case of the GCI engine. A vast amount of engine points were explored in order to cover as much as possible of the operating range when considering automotive applications and thus confirming the broad validity of the model.
Technical Paper

Ethanol in a Light-Duty Dual Fuel Compression Ignition Engine: 3-D Analysis of the Combustion Process

2021-09-05
2021-24-0036
A wider use of biofuels in internal combustion engines could reduce the emissions of pollutants and greenhouse gases from the transport sector. In particular, due to stringent emission regulatory programs, compression ignition engine requires interventions aimed at reducing their polluting emissions. Ethanol, a low carbon fuel generally produced from biomass, is a promising alternative fuel applicable in compression ignition engines to reduce CO2 and soot emissions. In this paper, the application of a dual fuel diesel-ethanol configuration in a light-duty compression ignition engine has been numerically investigated. Ethanol is injected into the intake port, while diesel fuel is directly injected into the combustion chamber of the analyzed engine. CFD simulations have been carried out by means of the AVL Fire 3-D code. The operation at given engine load and speed has been simulated considering different diesel injection timings.
Technical Paper

Analysis of the Effects of Injection Pressure Variation in Gasoline Partially Premixed Combustion

2021-04-06
2021-01-0517
Compression-ignited engines are still considered the most efficient and reliable technology for automotive applications. However, current and future emission regulations, which severely limit the production of NOx, particulate matter and CO2, hinder the use of diesel-like fuels. As a matter of fact, the spontaneous ignition of directly-injected Diesel leads to a combustion process that is heterogeneous by nature, therefore characterized by the simultaneous production of particulate matter and NOx. In this scenario, several innovative combustion techniques have been investigated over the past years, the goal being to benefit from the high thermal efficiency of compression-ignited engines, which results primarily from high Compression Ratio and lean and unthrottled operation, while simultaneously mitigating the amount of pollutant emissions.
Technical Paper

Experimental Investigation on the Effects of Cooled Low Pressure EGR and Water Injection on Combustion of a Turbocharged GDI Engine

2020-09-27
2020-24-0003
This work focuses on the effects of cooled Low Pressure EGR and Water Injection observed by conducting experimental tests consisting mainly of Spark Advance sweeps at different cooled LP-EGR and WI rates. The implications on combustion and main engine performance indexes are then analysed and modelled with a control-oriented approach, showing that combustion duration and phase and exhaust gas temperature are the main affected parameters. Results show that cooled LP-EGR and WI have similar effects, being the associated combustion speed decrease the main cause of exhaust gas temperature reduction. Experimental data is used to identify control-oriented polynomial models able to capture the effects of LP-EGR and WI on both these aspects. The limitations of LP-EGR are also explored, identifying maximum compressor volumetric flow and combustion stability as the main ones.
Journal Article

The Use of Piezoelectric Washers for Feedback Combustion Control

2020-04-14
2020-01-1146
The use of piezoelectric cylinder pressure sensors is very popular during engine testing, but cylinder pressure information is becoming mandatory also in several on-board applications, where Low Temperature Combustion (LTC) approaches require a feedback control of combustion, due to poor combustion stability and the risk of knock or misfire. Several manufacturers showed the capability to develop solutions for cylinder pressure sensing in on-board automotive and aeronautical applications, and some of them have been patented. The most straight-forward approach seems the application of a piezo-electric washer as a replacement of the original part equipping the spark plug; the injector could also be used to transfer the cylinder pressure information to the piezoelectric quartz, in diesel or Gasoline Direct Injections (GDI) engines.
Technical Paper

Evaluation of Water and EGR Effects on Combustion Characteristics of GDI Engines Using a Chemical Kinetics Approach

2019-09-09
2019-24-0019
The modern spark ignition engines, due to the introduced strategies for limiting the consumption without reducing the power, are sensitive to both the detonation and the increase of the inlet turbine temperature. In order to reduce the risk of detonation, the use of dilution with the products of combustion (EGR) is an established practice that has recently improved with the use of water vapor obtained via direct or indirect injection. The application and optimization of these strategies cannot ignore the knowledge of physical quantities characterizing the combustion such as the laminar flame speed and the ignition delay, both are intrinsic property of the fuel and are function of the mixture composition (mixture fraction and dilution) and of its thermodynamic conditions. The experimental measurements of the laminar flame speed and the ignition delay available in literature, rarely report the effects of dilution by EGR or water vapor.
Technical Paper

Development and Validation of a Control-Oriented Analytic Engine Simulator

2019-09-09
2019-24-0002
Due to the recent anti-pollution policies, the performance increase in Spark Ignition (SI) engines is currently under the focus of automotive manufacturers. This trend drives control systems designers to investigate accurate solutions and build more sophisticated algorithms to increase the efficiency of this kind of engines. The development of a control strategy is composed of several phases and steps, and the first part of such process is typically spent in defining and investigating the logic of the strategy. During this phase it is often useful to have a light engine simulator, which allows to have robust synthetic combustion data with a low calibration and computational effort. In the first part of this paper, a description of the control-oriented ANalytical Engine SIMulator (ANESIM) is carried out.
Technical Paper

Experimental Validation of a Model-Based Water Injection Combustion Control System for On-Board Application

2019-09-09
2019-24-0015
Water Injection (WI) has become a key technology for increasing combustion efficiency in modern GDI turbocharged engines. In fact, the addition of water mitigates significantly the occurrence of knock, reduces exhaust gas temperatures, and opens the possibility to reach optimum heat release phasing even at high load. This work presents the latest development of a model-based WI controller, and its experimental validation on a GDI TC engine. The controller is based on a novel approach that involves an analytic combustion model to define the spark advance (SA) required to reach a combustion phase target, considering injected water mass effects. The calibration and experimental validation of the proposed controller is shown in detail in the paper.
X