Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Combined Experimental/Numerical Study of the Soot Formation Process in a Gasoline Direct-Injection Spray in the Presence of Laser-Induced Plasma Ignition

2020-04-14
2020-01-0291
Combustion issued from an eight-hole, direct-injection spray was experimentally studied in a constant-volume pre-burn combustion vessel using simultaneous high-speed diffused back-illumination extinction imaging (DBIEI) and OH* chemiluminescence. DBIEI has been employed to observe the liquid-phase of the spray and to quantitatively investigate the soot formation and oxidation taking place during combustion. The fuel-air mixture was ignited with a plasma induced by a single-shot Nd:YAG laser, permitting precise control of the ignition location in space and time. OH* chemiluminescence was used to track the high-temperature ignition and flame. The study showed that increasing the delay between the end of injection and ignition drastically reduces soot formation without necessarily compromising combustion efficiency. For long delays between the end of injection and ignition (1.9 ms) soot formation was eliminated in the main downstream charge of the fuel spray.
Journal Article

The Effects of Injector Temperature on Spray Characteristics in Heavy-Duty Diesel Sprays

2018-04-03
2018-01-0284
This work investigates the impact of injector temperature on the characteristics of high-pressure n-dodecane sprays under conditions relevant to heavy-duty diesel engines. Sprays are injected from a pair of single-hole diesel injectors belonging to the family of “Spray C” and “Spray D” Engine Combustion Network (ECN) injectors. Low and high injector temperature conditions are achieved by activating or deactivating a cooling jacket. We quantify spray spreading angle and penetration using high-speed shadowgraphy and long-distance microscopy imaging. We evaluate differences in fuel/air mixture formation at key timings through one-dimensional modeling. Injections from a cooled injector penetrate faster than those from a higher temperature injector, especially for an injector already prone to cavitation (Spray C).
Journal Article

Standardized Optical Constants for Soot Quantification in High-Pressure Sprays

2018-04-03
2018-01-0233
Soot formation in high-pressure n-dodecane sprays is investigated under conditions relevant to heavy-duty diesel engines. Sprays are injected from a single-hole diesel injector belonging to the family of engine combustion network (ECN) Spray D injectors. Soot is quantified using a high-speed extinction imaging diagnostic with incident light wavelengths of 623 nm and 850 nm. Previously, soot measurements in a high-pressure spray using 406-nm and 520-nm incident light demonstrated a minimal wavelength dependence in the complex refractive index of soot (m), as demonstrated by a near unity ratio of the non-dimensional extinction coefficients (ke,406 nm/ke,520 nm). The present work, however, demonstrates a significant difference in m for measurements with infrared incident light. During the quasi-steady period of the spray combustion event, the experimentally determined ke ratio (ke,623 nm/ke,850 nm) is 1.42 ± 0.27.
Journal Article

A Comparison of Experimental and Modeled Velocity in Gasoline Direct-Injection Sprays with Plume Interaction and Collapse

2017-03-28
2017-01-0837
Modeling plume interaction and collapse for direct-injection gasoline sprays is important because of its impact on fuel-air mixing and engine performance. Nevertheless, the aerodynamic interaction between plumes and the complicated two-phase coupling of the evaporating spray has shown to be notoriously difficult to predict. With the availability of high-speed (100 kHz) Particle Image Velocimetry (PIV) experimental data, we compare velocity field predictions between plumes to observe the full temporal evolution leading up to plume merging and complete spray collapse. The target “Spray G” operating conditions of the Engine Combustion Network (ECN) is the focus of the work, including parametric variations in ambient gas temperature. We apply both LES and RANS spray models in different CFD platforms, outlining features of the spray that are most critical to model in order to predict the correct aerodynamics and fuel-air mixing.
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Journal Article

Automated Detection of Primary Particles from Transmission Electron Microscope (TEM) Images of Soot Aggregates in Diesel Engine Environments

2015-09-01
2015-01-1991
The major challenge of the post-processing of soot aggregates in transmission electron microscope (TEM) images is the detection of soot primary particles that have no clear boundaries, vary in size within the fractal aggregates, and often overlap with each other. In this study, we propose an automated detection code for primary particles implementing the Canny Edge Detection (CED) and Circular Hough Transform (CHT) on pre-processed TEM images for particle edge enhancement using unsharp filtering as well as image inversion and self-subtraction. The particle detection code is tested for soot TEM images obtained at various ambient and injection conditions, and from five different combustion facilities including three constant-volume combustion chambers and two diesel engines.
Journal Article

Detailed Characterization of Negative Valve Overlap Chemistry by Photoionization Mass Spectroscopy

2015-09-01
2015-01-1804
For next-generation engines that operate using low-temperature gasoline combustion (LTGC) modes, a major issue remains poor combustion stability at low-loads. Negative valve overlap (NVO) enables enhanced main combustion control through modified valve timings to retain combustion residuals along with a small fuel injection that partially reacts during the recompression. While the thermal effects of NVO fueling on main combustion are well understood, the chemical effects of NVO reactions are less certain, especially oxygen-deficient reactions where fuel pyrolysis dominates. To better understand NVO period chemistry details, comprehensive speciation of engine samples collected at the end of the NVO cycle was performed by photoionization mass spectroscopy (PIMS) using synchrotron generated vacuum-ultraviolet light.
Journal Article

Visualization of Ignition Processes in High-Pressure Sprays with Multiple Injections of n-Dodecane

2015-04-14
2015-01-0799
We investigate the mixing, penetration, and ignition characteristics of high-pressure n-dodecane sprays having a split injection schedule (0.5/0.5 dwell/0.5 ms) in a pre-burn combustion vessel at ambient temperatures of 750 K, 800 K and 900 K. High-speed imaging techniques provide a time-resolved measure of vapor penetration and the timing and progression of the first- and second-stage ignition events. Simultaneous single-shot planar laser-induced fluorescence (PLIF) imaging identifies the timing and location where formaldehyde (CH2O) is produced from first-stage ignition and consumed following second-stage ignition. At the 900-K condition, the second injection penetrates into high-temperature combustion products remaining in the near-nozzle region from the first injection. Consequently, the ignition delay for the second injection is shorter than that of the first injection (by a factor of two) and the second injection ignites at a more upstream location near the liquid length.
Technical Paper

Measurement of Liquid and Vapor Penetration of Diesel Sprays with a Variation in Spreading Angle

2015-04-14
2015-01-0946
The mixing field of sprays injected into high temperature and pressure environments has been observed to be tightly connected to spreading angle, therefore linking vaporization and combustion processes to the angular dispersion of the spray. Visualization of the Engine Combustion Network three-hole, Spray B diesel injector shows substantial variation in near-field spreading angle with respect to time compared to past measurements of the single-hole, Spray A injector. The source of these variations originating inside the nozzle, and the implications on mixing, evaporation, and combustion of the diesel plume, need to be understood. In this study, we characterize the ECN-target plume for a Spray B injector (Serial # 211201), which already benefits from extensive and detailed internal measurements of nozzle geometry and needle movement, while comparing to the single-hole Spray A with the same type of detailed geometry and understanding.
Journal Article

Effects of Oxygenated Fuels on Combustion and Soot Formation/Oxidation Processes

2014-10-13
2014-01-2657
The Leaner Lifted-Flame Combustion (LLFC) strategy offers a possible alternative to low temperature combustion or other globally lean, premixed operation strategies to reduce soot directly in the flame, while maintaining mixing-controlled combustion. Adjustments to fuel properties, especially fuel oxygenation, have been reported to have potentially beneficial effects for LLFC applications. Six fuels were selected or blended based on cetane number, oxygen content, molecular structure, and the presence of an aromatic hydrocarbon. The experiments compared different fuel blends made of n-hexadecane, n-dodecane, methyl decanoate, tri-propylene glycol monomethyl ether (TPGME), as well as m-xylene. Several optical diagnostics have been used simultaneously to monitor the ignition, combustion and soot formation/oxidation processes from spray flames in a constant-volume combustion vessel.
Journal Article

Study of Soot Formation and Oxidation in the Engine Combustion Network (ECN), Spray A: Effects of Ambient Temperature and Oxygen Concentration

2013-04-08
2013-01-0901
Within the Engine Combustion Network (ECN) spray combustion research frame, simultaneous line-of-sight laser extinction measurements and laser-induced incandescence (LII) imaging were performed to derive the soot volume fraction (fv). Experiments are conducted at engine-relevant high-temperature and high-pressure conditions in a constant-volume pre-combustion type vessel. The target condition, called "Spray A," uses well-defined ambient (900 K, 60 bar, 22.8 kg/m₃, 15% oxygen) and injector conditions (common rail, 1500 bar, KS1.5/86 nozzle, 0.090 mm orifice diameter, n-dodecane, 363 K). Extinction measurements are used to calibrate LII images for quantitative soot distribution measurements at cross sections intersecting the spray axis. LII images are taken after the start of injection where quasi-stationary combustion is already established.
X