Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Methanol Mixing-Controlled Compression Ignition with Ignition Enhancer for Off-Road Engine Operation

2024-04-09
2024-01-2701
Methanol is one of the most promising fuels for the decarbonization of the off-road and transportation sectors. Although methanol is typically seen as an alternative fuel for spark ignition engines, mixing-controlled compression ignition (MCCI) combustion is typically preferred in most off-road and medium-and heavy-duty applications due to its high reliability, durability and high-efficiency. In this paper, the potential of using ignition enhancers to enable methanol MCCI combustion was investigated. Methanol was blended with 2-ethylhexyl nitrate (EHN) and experiments were performed in a single-cylinder production-like diesel research engine, which has a displacement volume of 0.83 L and compression ratio of 16:1. The effect of EHN has been evaluated with three different levels (3%vol, 5%vol, and 7%vol) under low- and part-load conditions. The injection timing has been swept to find the stable injection window for each EHN level and load.
Technical Paper

Effects of Ethanol Blending on the Reactivity and Laminar Flame Speeds of Gasoline, Methanol-to-Gasoline, and Ethanol-to-Gasoline Surrogates

2024-04-09
2024-01-2817
Ethanol blending is one method that can be used to reduce knock in spark ignition engines by decreasing the autoignition reactivity of the fuel and modifying its laminar flame speed. In this paper, the effects of ethanol blending on knock propensity and flame speed of petroleum and low-carbon gasoline fuels is analyzed. To do so, surrogate fuels were formulated for methanol-to-gasoline (MTG) and ethanol-to-gasoline (ETG) based on the fuels’ composition, octane number, and select physical properties; and 0-D and 1-D chemical kinetics simulations were performed to investigate reactivity and laminar flame speed, respectively. Results of MTG and ETG were compared against those of PACE-20, a well-characterized surrogate for regular E10 gasoline. Similarly to PACE-20, blending MTG and ETG with ethanol increases the fuel’s research octane number (RON) and sensitivity.
Technical Paper

Deflagration-Based Knock of Methanol SI Combustion and its Implications for Combustion Noise

2024-04-09
2024-01-2819
Methanol emerges as a compelling renewable fuel for decarbonizing engine applications due to a mature industry with high production capacity, existing distribution infrastructure, low carbon intensity and favorable cost. Methanol’s high flame speed and high autoignition resistance render it particularly well-suited for spark-ignition (SI) engines. Previous research showed a distinct phenomenon, known deflagration-based knock in methanol combustion, whereby knocking combustion was observed albeit without end-gas autoignition. This work studies the implications of deflagration-based knock on noise emissions by investigating the knock intensity and combustion noise at knock-limited operation of methanol in a single-cylinder direct-injection SI engine operated at both stoichiometric and lean (λ = 2.0) conditions. Results are compared against observations from a premium-grade gasoline.
Technical Paper

Effect of Cyclo-Pentane Impurities on the Autoignition Reactivity and Properties of a Gasoline Surrogate Fuel

2024-02-16
2024-01-5021
Surrogate fuels that reproduce the characteristics of full-boiling range fuels are key tools to enable numerical simulations of fuel-related processes and ensure reproducibility of experiments by eliminating batch-to-batch variability. Within the PACE initiative, a surrogate fuel for regular-grade E10 (10%vol ethanol) gasoline representative of a U.S. market gasoline, termed PACE-20, was developed and adopted as baseline fuel for the consortium. Although extensive testing demonstrated that PACE-20 replicates the properties and combustion behavior of the full-boiling range gasoline, several concerns arose regarding the purity level required for the species that compose PACE-20. This is particularly important for cyclo-pentane, since commercial-grade cyclo-pentane typically shows 60%–85% purity. In the present work, the effects of the purity level of cyclo-pentane on the properties and combustion characteristics of PACE-20 were studied.
Technical Paper

Adapting Dimensionless Numbers Developed for Knock Prediction Under Homogeneous Conditions to Ultra-Lean Spark Ignition Conditions

2023-09-29
2023-32-0008
Knock in spark-ignition (SI) engines has been a subject of many research efforts and its relationship with high efficiency operating conditions keeps it a contemporary issue as engine technologies push classical limits. Despite this long history of research, literature is lacking coherent and generalized descriptions of how knock is affected by changes in the full cylinder temperature field, residence time (engine speed), and air/fuel ratio. In this work, two dimensionless numbers are applied to fully 3D SI conditions. First, the characteristic time of autoignition (ignition delay) is compared against the characteristic time of end-gas deflagration, which was used to predict knocking propensity. Second, the temperature gradient of the end-gas is compared against a critical detonation-based temperature gradient, which predicts the knock intensity.
Technical Paper

Impact of Hydrogen on the Ignition and Combustion Behavior Diesel Sprays in a Dual Fuel, Diesel-Piloted, Premixed Hydrogen Engine

2023-08-28
2023-24-0061
Renewably sourced hydrogen is seen as promising sustainable carbon-free alternative to conventional fossil fuels for use in hard to decarbonize sectors. As the hydrogen supply builds up, dual-fuel hydrogen-diesel engines have a particular advantage of fuel flexibility as they can operate only on diesel fuel in case of supply shortages, in addition to the simplicity of engine modification. The dual-fuel compression ignition strategy initiates combustion of hydrogen using short pilot-injections of diesel fuel into the combustion chamber. In the context of such engine combustion process, the impact of hydrogen addition on the ignition and combustion behavior of a pilot diesel-spray is investigated in a heavy-duty, single-cylinder, optical engine. To this end, the spatial and temporal evolution of two-stage autoignition of a diesel-fuel surrogate, n-heptane, injected into a premixed charge of hydrogen and air is studied using optical diagnostics.
Technical Paper

Effect of Spray Collapse on Mixture Preparation and Combustion Characteristics of a Spark-Ignition Heavy-Duty Diesel Optical Engine Fueled with Direct-Injected Liquefied Petroleum Gas (LPG)

2023-04-11
2023-01-0323
Liquefied Petroleum Gas (LPG), as a common alternative fuel for internal combustion engines is currently widespread in use for fleet vehicles. However, a current majority of the LPG-fueled engines, uses port-fuel injection that offers lower power density when compared to a gasoline engine of equivalent displacement volume. This is due to the lower molecular weight and higher volatility of LPG components that displaces more air in the intake charge due to the larger volume occupied by the gaseous fuel. LPG direct-injection during the closed-valve portion of the cycle can avoid displacement of intake air and can thereby help achieve comparable gasoline-engine power densities. However, under certain engine operating conditions, direct-injection sprays can collapse and lead to sub-optimal fuel-air mixing, wall-wetting, incomplete combustion, and increased pollutant emissions.
Technical Paper

Characterization of High-Tumble Flow Effects on Early Injection for a Lean-Burn Gasoline Engine

2023-04-11
2023-01-0238
The influence of early induction stroke direct injection on late-cycle flows was investigated for a lean-burn, high-tumble, gasoline engine. The engine features side-mounted injection and was operated at a moderate load (8.5 bar brake mean effective pressure) and engine speed (2000 revolutions per minute) condition representative of a significant portion of the duty cycle for a hybridized powertrain system. Thermodynamic engine tests were used to evaluate cam phasing, injection schedule, and ignition timing such that an optimal balance of acceptable fuel economy, combustion stability, and engine-out nitrogen oxide (NOx) emissions was achieved. A single cylinder of the 4-cylinder thermodynamic engine was outfitted with an endoscope that enabled direct imaging of the spark discharge and early flame development.
Journal Article

Exploring the EGR Dilution Limits of a Pre-Chamber Ignited Heavy-Duty Natural Gas Engine Operated at Stoichiometric Conditions - An Optical Study

2023-04-11
2023-01-0256
Pre-chamber spark ignition (PCSI) systems have been proven to improve combustion stability in highly-diluted and ultra-lean natural gas (NG) engine operation by providing spatially distributed ignition initiated by multiple turbulent flame-jets that lead to faster combustion compared to conventional spark ignition. This work investigates the physico-chemical processes that drive the ignition and subsequent combustion in the presence of combustion residuals (internal EGR) within the pre-chamber at varying EGR levels. The over-arching goal is to improve the dilution tolerance of PCSI systems for stoichiometric-operation of on-road heavy-duty natural gas engine. To this end, experiments were performed in a heavy-duty, optical, single-cylinder engine to explore the EGR dilution limits of a pre-chamber, spark-ignited, NG engine operated under stoichiometric conditions. A special skip-fire sequence is utilized to distinguish the effects of in-cylinder combustion residuals from external EGR.
Technical Paper

CFD-Based Assessment of the Effect of End-Gas Temperature Stratification on Acoustic Knock Generation in an Ultra-Lean Burn Spark Ignition Engine

2023-04-11
2023-01-0250
End-gas temperature stratification has long been studied with respect to its effect on stoichiometric spark-ignition (SI) engine knock. The role of temperature stratification for homogeneous-charge compression ignition (HCCI) engine operation is also reasonably well understood. However, the role of temperature stratification in ultra-lean SI engines has had less coverage. Literature is lacking well-controlled studies of how knock is affected by changes in the full cylinder temperature fields, especially since cycle-to-cycle variability can impede a determination of cause and effect. In this work, the knocking propensity of specific cylinder conditions is investigated via 3D computational fluid dynamics (CFD) simulations utilizing a large eddy simulation (LES) framework.
Journal Article

A Numerical Approach for the Analysis of Hydrotreated Vegetable Oil and Dimethoxy Methane Blends as Low-Carbon Alternative Fuel in Compression Ignition Engines

2023-04-11
2023-01-0338
Despite recent advances towards powertrain electrification as a solution to mitigate pollutant emissions from road transport, synthetic fuels (especially e- fuels) still have a major role to play in applications where electrification will not be viable in short-medium term. Among e-fuels, oxymethylene ethers are getting serious interest within the scientific community and industry. Dimethoxy methane (OME1) is the smaller molecule among this group, which is of special interest due to its low soot formation. However, its application is still limited mainly due to its low lower heating value. In contrast, other fuel alternatives like hydrogenated vegetable oil (HVO) are considered as drop-in solutions thanks to their very similar properties and molecular composition to that of fossil diesel. However, their pollutant emission improvement is limited.
Journal Article

Experimental and Numerical Study on the Effect of Nitric Oxide on Autoignition and Knock in a Direct-Injection Spark-Ignition Engine

2022-08-30
2022-01-1005
Nitric Oxide (NO) can significantly influence the autoignition reactivity and this can affect knock limits in conventional stoichiometric SI engines. Previous studies also revealed that the role of NO changes with fuel type. Fuels with high RON (Research Octane Number) and high Octane Sensitivity (S = RON - MON (Motor Octane Number)) exhibited monotonically retarding knock-limited combustion phasing (KL-CA50) with increasing NO. In contrast, for a high-RON, low-S fuel, the addition of NO initially resulted in a strongly retarded KL-CA50 but beyond the certain amount of NO, KL-CA50 advanced again. The current study focuses on same high-RON, low-S Alkylate fuel to better understand the mechanisms responsible for the reversal in the effect of NO on KL-CA50 beyond a certain amount of NO.
Journal Article

Development and Validation of an EHN Mechanism for Fundamental and Applied Chemistry Studies

2022-03-29
2022-01-0455
Autoignition enhancing additives have been used for years to enhance the ignition quality of diesel fuel, with 2-ethylhexyl nitrate (EHN) being the most common additive. EHN also enhances the autoignition reactivity of gasoline, which has advantages for some low-temperature combustion techniques, such as Sandia’s Low-Temperature Gasoline Combustion (LTGC) with Additive-Mixing Fuel Injection (AMFI). LTGC-AMFI is a new high-efficiency and low-emissions engine combustion process based on supplying a small, variable amount of EHN into the fuel for better engine operation and control. However, the mechanism by which EHN interacts with the fuel remains unclear. In this work, a chemical-kinetic mechanism for EHN was developed and implemented in a detailed mechanism for gasoline fuels. The combined mechanism was validated against shock-tube experiments with EHN-doped n-heptane and HCCI engine data for EHN-doped regular E10 gasoline. Simulations showed a very good match with experiments.
Technical Paper

A Numerical and Experimental Investigation on Different Strategies to Evaluate Heat Release Rate and Performance of a Passive Pre-Chamber Ignition System

2022-03-29
2022-01-0386
Pre-chamber ignition has demonstrated capability to increase internal combustion engine in-cylinder burn rates and enable the use of low engine-out pollutant emission combustion strategies. In the present study, newly designed passive pre-chambers with different nozzle-hole patterns - that featured combinations of radial and axial nozzles - were experimentally investigated in an optically accessible, single-cylinder research engine. The pre-chambers analyzed had a narrow throat geometry to increase the velocity of the ejected jets. In addition to a conventional inductive spark igniter, a nanosecond spark ignition system that promotes faster early burn rates was also investigated. Time-resolved visualization of ignition and combustion processes was accomplished through high-speed hydroxyl radical (OH*) chemiluminescence imaging. Pressure was measured during the engine cycle in both the main chamber and pre-chamber to monitor respective combustion progress.
Journal Article

Gasoline Direct Injector Deposits: Impacts of Fouling Mechanism on Composition and Performance

2022-03-29
2022-01-0488
Injector performance in gasoline Direct-Injection Spark-Ignition (DISI) engines is a key focus in the automotive industry as the vehicle parc transitions from Port Fuel Injected (PFI) to DISI engine technology. DISI injector deposits, which may impact the fuel delivery process in the engine, sometimes accumulate over longer time periods and greater vehicle mileages than traditional combustion chamber deposits (CCD). These higher mileages and longer timeframes make the evaluation of these deposits in a laboratory setting more challenging due to the extended test durations necessary to achieve representative in-use levels of fouling. The need to generate injector tip deposits for research purposes begs the questions, can an artificial fouling agent to speed deposit accumulation be used, and does this result in deposits similar to those formed naturally by market fuels?
Technical Paper

Spatio-Temporal Progression of Two-Stage Autoignition for Diesel Sprays in a Low-Reactivity Ambient: n-Heptane Pilot-Ignited Premixed Natural Gas

2021-04-06
2021-01-0525
The spatial and temporal locations of autoignition depend on fuel chemistry and the temperature, pressure, and mixing trajectories in the fuel jets. Dual-fuel systems can provide insight into fuel-chemistry aspects through variation of the proportions of fuels with different reactivities, and engine operating condition variations can provide information on physical effects. In this context, the spatial and temporal progression of two-stage autoignition of a diesel-fuel surrogate, n-heptane, in a lean-premixed charge of synthetic natural gas (NG) and air is imaged in an optically accessible heavy-duty diesel engine. The lean-premixed charge of NG is prepared by fumigation upstream of the engine intake manifold.
Technical Paper

Mixture Stratification for CA50 Control of LTGC Engines with Reactivity-Enhanced and Non-Additized Gasoline

2021-04-06
2021-01-0513
Low-temperature gasoline combustion engines can provide high efficiencies with very low NOx and particulate emissions, but rapid control of the combustion timing (50% burn point, CA50) remains a challenge. Partial Fuel Stratification (PFS) was recently demonstrated [2019-01-1156] to control CA50 over a wide range at some selected operating conditions using a regular-grade E10 gasoline. PFS was produced by a double direct injection (D-DI) strategy using a gasoline-type direct injector. For this D-DI-PFS strategy, the majority of the fuel is injected early in the intake stroke, establishing the minimum equivalence ratio in the charge, while the remainder of the fuel is supplied by a second injection at a variable time (SOI2) during the compression stroke to vary the amount of stratification. Adjusting the stratification changes the combustion timing, and this can be done on a cycle-to-cycle basis by adjusting SOI2.
Technical Paper

Effects of Injection Timing and Duration on Fuel-Spray Collapse and Wall-Wetting in a Stratified Charge SI Engine

2021-04-06
2021-01-0544
Fuel-lean combustion using late injection during the compression stroke can result in increased soot emissions due to excessive wall-wetting and locally unfavorable air-fuel mixtures due to spray collapse. Multi-hole injectors, most commonly used, experiencing spray collapse, can worsen both problems. Hence, it is of interest to study the contribution of spray collapse to wall-wetting to understand how it can be avoided. This optical-engine study reveals spray characteristics and the associated wall-wetting for collapsing and non-collapsing sprays, when systematically changing the intake pressure, injection duration and timing. High-speed imaging of Mie-scattered light was used to observe changes in the spray structure, and a refractive index matching (RIM) technique was utilized to detect and quantify the area of fuel-film patterns on bottom of the piston bowl. E30 (gasoline blended with 30% ethanol by volume) was used throughout the experiments.
Technical Paper

Nanosecond Pulsed Ignition for Automotive Applications: Performance and Emissions Characteristics of Gasoline Combustion in an Optical Engine

2021-04-06
2021-01-0475
Performance and emissions characteristics were measured for a part- load operating point using an optically-accessible single-cylinder gasoline research engine equipped with three different exploratory nanosecond repetitively pulse discharge (NRPD) igniters. The three igniters investigated are as follows: 1) a four-prong advanced corona ignition system (ACIS) that produces large ignition volumes from streamer discharges, 2) a barrier discharge igniter (BDI) that generates strong surface plasma along the insulator that completely encases the power electrode, and 3) a J-hook non-resistive nanosecond spark (NRNS) igniter. For select conditions, high-speed imaging (20 kHz) of excited state hydroxyl (OH*) chemiluminescence was performed to measure flame development in-cylinder. An available NRPD pulse generator was used to supply positive direct current (DC) pulses (~ 10 ns pulse width) to each igniter at a fixed 100 kHz frequency.
Technical Paper

Measurements and Correlations of Local Cylinder-Wall Heat-Flux Relative to Near-Wall Chemiluminescence across Multiple Combustion Modes

2020-04-14
2020-01-0802
Minimizing heat-transfer (HT) losses is important for both improving engine efficiency and increasing exhaust energy for turbocharging and exhaust aftertreatment management, but engine combustion system design to minimize these losses is hindered by significant uncertainties in prediction. Empirical HT correlations such as the popular Woschni model have been developed and various attempts at improving predictions have been proposed since the 1960s, but due to variations in facilities and techniques among various studies, comparison and assessment of modelling approaches among multiple combustion modes is not straightforward. In this work, simultaneous cylinder-wall temperature and OH* chemiluminescence high-speed video are all recorded in a single heavy-duty optical engine operated under multiple combustion modes. OH* chemiluminescence images provide additional insights for identifying the causes of near-wall heat flux changes.
X