Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Performance Analysis of Volumetric Expanders in Heavy-Duty Truck Waste Heat Recovery

2019-12-19
2019-01-2266
With increasing demands to reduce fuel consumption and CO2 emissions, it is necessary to recover waste heat from modern Heavy Duty (HD) truck engines. Organic Rankine Cycle (ORC) has been acknowledged as one of the most effective systems for Waste Heat Recovery (WHR) due to its simplicity, reliability and improved overall efficiency. The expander and working fluid used in ORC WHR greatly impact the overall performance of an integrated engine and WHR system. This paper presents the effects of volumetric expanders on the ORC WHR system of a long haulage HD truck engine at a steady-state engine operating point chosen from a real-time road data. Performance of a long haulage HD truck engine is analyzed, based on the choice of three volumetric expanders for its WHR system, using their actual performance values. The expanders are: an oil-free open-drive scroll, a hermetic scroll and an axial piston expander with working fluids R123, R245fa and ethanol, respectively.
Technical Paper

Study of Nozzle Fouling: Deposit Build-Up and Removal

2019-12-19
2019-01-2231
The global demand for decreased emission from engines and increased efficiency drives manufactures to develop more advanced fuel injection systems. Today's compression-ignited engines use common rail systems with high injection pressures and fuel injector nozzles with small orifice diameters. These systems are highly sensitive to small changes in orifice diameters since these could lead to deteriorations in spray characteristics, thus reducing engine performance and increasing emissions. Phenomena that could create problems include nozzle fouling caused by metal carboxylates or biofuels. The problems increase with extended use of biofuels. This paper reports on an experimental study of nozzle hole fouling performed on a single-cylinder engine. The aim was to identify if the solubility of the fuel has an effect on deposit build-up and, thus, the reduction in fuelling with associated torque loss, and if there is a probability of regenerating the contaminated injectors.
Technical Paper

CFD-Driven Preliminary Investigation of Ethanol-Diesel Diffusive Combustion in Heavy-Duty Engines

2019-12-19
2019-01-2192
The introduction of renewable alcohols as fuels for heavy-duty engines may play a relevant role for the reduction of the carbon footprint of the transport sector. The direct injection of ethanol as main fuel and diesel as pilot fuel in the engine combustion chamber through two separate injectors may allow good combustion controllability over the entire engine operating range by targeting diffusive combustion. Closed-cycle combustion simulations have been carried out using AVL FIRE coupled to AVL TABKIN for the implementation of the Flamelet Generated Manifold (FGM) chemistry reduction technique in order to investigate the influence of the injection system geometry and the injection strategy of pure ethanol and diesel fuel on ignition characteristics and combustion at different operating conditions.
Journal Article

Characterization of Deposits Collected from Plugged Fuel Filters

2019-09-09
2019-24-0140
Fuel filters serve as a safety belt for modern compression ignition engines. To meet the requirements from environmental regulations these engines use the common rail injection system, which is highly susceptible to contamination from the fuel. Furthermore, the public awareness towards global warming is raising the need for renewable fuels such as biodiesel. An increased fuel variety brings a higher requirement for fuel filters as well. To better understand the process of filtration, awareness of the different possible contaminants from the field is needed. This study used several chemical characterization techniques to examine the deposits from plugged fuel filters collected from the field. The vehicle was run with a biodiesel blend available on the market.
X